Abstract
BACKGROUND: Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data. RESULTS: We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups. CONCLUSION: Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.Citation
BMC Bioinformatics. 2008 Mar 6; 9:142ae974a485f413a2113503eed53cd6c53
10.1186/1471-2105-9-142
Scopus Count
Related articles
- Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
- Authors: Gao X
- Issue date: 2006 Jun 15
- Ranking analysis of microarray data: a powerful method for identifying differentially expressed genes.
- Authors: Tan YD, Fornage M, Fu YX
- Issue date: 2006 Dec
- Tail posterior probability for inference in pairwise and multiclass gene expression data.
- Authors: Bochkina N, Richardson S
- Issue date: 2007 Dec
- A unified framework for finding differentially expressed genes from microarray experiments.
- Authors: Shaik JS, Yeasin M
- Issue date: 2007 Sep 18
- Using weighted permutation scores to detect differential gene expression with microarray data.
- Authors: Guo X, Pan W
- Issue date: 2005 Aug