• A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.

      Sharma, Ashok; Podolsky, Robert H.; Zhao, Jieping; McIndoe, Richard A; Department of Pathology (2009-04-24)
      MOTIVATION: As the number of publically available microarray experiments increases, the ability to analyze extremely large datasets across multiple experiments becomes critical. There is a requirement to develop algorithms which are fast and can cluster extremely large datasets without affecting the cluster quality. Clustering is an unsupervised exploratory technique applied to microarray data to find similar data structures or expression patterns. Because of the high input/output costs involved and large distance matrices calculated, most of the algomerative clustering algorithms fail on large datasets (30,000 + genes/200 + arrays). In this article, we propose a new two-stage algorithm which partitions the high-dimensional space associated with microarray data using hyperplanes. The first stage is based on the Balanced Iterative Reducing and Clustering using Hierarchies algorithm with the second stage being a conventional k-means clustering technique. This algorithm has been implemented in a software tool (HPCluster) designed to cluster gene expression data. We compared the clustering results using the two-stage hyperplane algorithm with the conventional k-means algorithm from other available programs. Because, the first stage traverses the data in a single scan, the performance and speed increases substantially. The data reduction accomplished in the first stage of the algorithm reduces the memory requirements allowing us to cluster 44,460 genes without failure and significantly decreases the time to complete when compared with popular k-means programs. The software was written in C# (.NET 1.1). AVAILABILITY: The program is freely available and can be downloaded from http://www.amdcc.org/bioinformatics/bioinformatics.aspx. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
    • ParaSAM: a parallelized version of the significance analysis of microarrays algorithm.

      Sharma, Ashok; Zhao, Jieping; Podolsky, Robert H.; McIndoe, Richard A; Department of Pathology (2010-05-20)
      MOTIVATION: Significance analysis of microarrays (SAM) is a widely used permutation-based approach to identifying differentially expressed genes in microarray datasets. While SAM is freely available as an Excel plug-in and as an R-package, analyses are often limited for large datasets due to very high memory requirements. SUMMARY: We have developed a parallelized version of the SAM algorithm called ParaSAM to overcome the memory limitations. This high performance multithreaded application provides the scientific community with an easy and manageable client-server Windows application with graphical user interface and does not require programming experience to run. The parallel nature of the application comes from the use of web services to perform the permutations. Our results indicate that ParaSAM is not only faster than the serial version, but also can analyze extremely large datasets that cannot be performed using existing implementations. AVAILABILITY: A web version open to the public is available at http://bioanalysis.genomics.mcg.edu/parasam. For local installations, both the windows and web implementations of ParaSAM are available for free at http://www.amdcc.org/bioinformatics/software/parasam.aspx.