• Angiotensin II Regulation of Aldosterone Synthase

      Nogueira, Edson da F.; Department of Physiology (2009-07)
      Angiotensin II (Ang II) is the major physiological regulator of aldosterone production acting acutely to stimulate aldosterone biosynthesis and chronically to increase the capacity of the adrenals to produce aldosterone. Aldosterone is principally synthesized in the zona glomerulosa of the adrenal by a series of enzymatic reactions leading to the conversion of cholesterol to aldosterone. The major goal of our study was to define the Ang II-induced mechanisms regulating the expression of aldosterone synthase (CYP11B2) in adrenocortical cells. We approached the analysis of the protein synthesis-dependent regulation of this enzyme by defining, through microarray and real time PCR analysis, the transcription factors that are rapidly induced by Ang II incubation of adrenocortical cell models from three species (human, bovine, and rat). The gene list generated by this comparison included: ATF3, BTG2, NR4A1, NR4A2, NR4A3, EGR1, FOS, FOSB, and JUNB. Importantly, pretreatment of H295R cells with cycloheximide had no effect on Ang II induction of these genes, suggesting that they are direct targets of Ang II signaling. Co-transfection studies, used to investigate the role of these transcription factors in the regulation of CYP11B2, determined that out of the nine transcription factors listed above, only the NGFI-B family members (NGFI-B, NURR1, and NOR1) increased expression of CYP11B2. The importance of NGFI-B in the regulation of CYP11B2 was confirmed by the decrease in CYP11B2 expression in the presence of a dominant-negative (DN)- NGFI-B. A pharmacological approach used to characterize the Ang II pathways regulating transcription of NGFI-B family genes suggested that Ang II binding to the AT1R increases activity of protein kinase C (PKC), Ca -dependent calmodulin kinases (CaMK), and SRC kinase (SRC), which act to regulate the expression of the family of NGFI-B genes as well as CYP11B2. In the current study we also analyzed protein synthesis-independent mechanisms regulating CYP11B2 expression. We studied the role of the ATF/CREB family of transcription factors (ATF1, ATF2, CREB, and CREM), which may bind the cAMP response element (CRE) in the promoter region of the CYP11B2 gene. Importantly, analysis of these transcription factors in the human H295R adrenocortical cell line revealed very low expression of CREB in comparison to the other CRE-binding proteins herein studied. We investigated Ang II-induced phosphorylation of these transcription factors, their binding to the promoter region of CYP11B2, and their effect on CYP11B2 expression. Ang II time-dependently induced phosphorylation of ATF1, ATF2, and CREM in H295R cells. The association of these transcription factors with the CYP11B2 promoter region was induced by Ang II and K+. Transfection of siRNA for ATF1, ATF2, and CREM significantly reduced CYP11B2 expression in Ang II-stimulated conditions. Expression of NURR-1 alone or with constitutively active ATF1, ATF2, CREB, and CREM increased the promoter activity of CYP11B2 in H295R cells. In summary, Ang II rapidly induces expression of newly synthesized transcription factors as well as the phosphorylation of transcription factors already present in the adrenocortical cell. These events are followed by increased CYP11B2 expression and, therefore, represent important mechanisms to increase the adrenal capacity to produce aldosterone.