• IFN-c Upregulates Survivin and Ifi202 Expression to Induce Survival and Proliferation of Tumor-Specific T Cells

      Zimmerman, Mary; Yang, Dafeng; Hu, Xiaolin; Liu, Feiyan; Singh, Nagendra; Browning, Darren; Ganapathy, Vadivel; Chandler, Phillip; Choubey, Divaker; Abrams, Scott I.; et al. (2010-11-22)
      Background: A common procedure in human cytotoxic T lymphocyte (CTL) adoptive transfer immunotherapy is to expand tumor-specific CTLs ex vivo using CD3 mAb prior to transfer. One of the major obstacles of CTL adoptive immunotherapy is a lack of CTL persistence in the tumor-bearing host after transfer. The aim of this study is to elucidate the molecular mechanisms underlying the effects of stimulation conditions on proliferation and survival of tumor-specific CTLs.
    • Metabolites of Purine Nucleoside Phosphorylase (NP) in Serum Have the Potential to Delineate Pancreatic Adenocarcinoma

      Vareed, Shaiju K.; Bhat, Vadiraja B.; Thompson, Christopher; Vasu, Vihas T.; Fermin, Damian; Choi, Hyungwon; Creighton, Chad J.; Gayatri, Sitaram; Lan, Ling; Putluri, Nagireddy; et al. (2011-03-23)
      Pancreatic Adenocarcinoma (PDAC), the fourth highest cause of cancer related deaths in the United States, has the most aggressive presentation resulting in a very short median survival time for the affected patients. Early detection of PDAC is confounded by lack of specific markers that has motivated the use of high throughput molecular approaches to delineate potential biomarkers. To pursue identification of a distinct marker, this study profiled the secretory proteome in 16 PDAC, 2 carcinoma in situ (CIS) and 7 benign patients using label-free mass spectrometry coupled to 1D-SDS-PAGE and Strong Cation-Exchange Chromatography (SCX). A total of 431 proteins were detected of which 56 were found to be significantly elevated in PDAC. Included in this differential set were Parkinson disease autosomal recessive, early onset 7 (PARK 7) and Alpha Synuclein (aSyn), both of which are known to be pathognomonic to Parkinson's disease as well as metabolic enzymes like Purine Nucleoside Phosphorylase (NP) which has been exploited as therapeutic target in cancers. Tissue Microarray analysis confirmed higher expression of aSyn and NP in ductal epithelia of pancreatic tumors compared to benign ducts. Furthermore, extent of both aSyn and NP staining positively correlated with tumor stage and perineural invasion while their intensity of staining correlated with the existence of metastatic lesions in the PDAC tissues. From the biomarker perspective, NP protein levels were higher in PDAC sera and furthermore serum levels of its downstream metabolites guanosine and adenosine were able to distinguish PDAC from benign in an unsupervised hierarchical classification model. Overall, this study for the first time describes elevated levels of aSyn in PDAC as well as highlights the potential of evaluating NP protein expression and levels of its downstream metabolites to develop a multiplex panel for non-invasive detection of PDAC.
    • Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants

      Van Emburgh, Beth O.; Robertson, Keith D.; Department of Biochemistry and Molecular Biology; GHSU Cancer Center (2011-07-4)
      DNA methylation, an essential regulator of transcription and chromatin structure, is established and maintained by the coordinated action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B, and the inactive accessory factor DNMT3L. Disruptions in DNMT3B function are linked to carcinogenesis and genetic disease. DNMT3B is also highly alternatively spliced in a tissue- and disease-specific manner. The impact of intra-DNMT3 interactions and alternative splicing on the function of DNMT3 family members remains unclear. In the present work, we focused on DNMT3B. Using a panel of in vitro assays, we examined the consequences of DNMT3B splicing and mutations on its ability to bind DNA, interact with itself and other DNMT3's, and methylate DNA. Our results show that, while the C-terminal catalytic domain is critical for most DNMT3B functions, parts of the N-terminal region, including the PWWP domain, are also important. Alternative splicing and domain deletions also influence DNMT3Bâ s cellular localization. Furthermore, our data reveal the existence of extensive DNMT3B self-interactions that differentially impact on its activity. Finally, we show that catalytically inactive isoforms of DNMT3B are capable of modulating the activity of DNMT3Aâ DNMT3L complexes. Our studies therefore suggest that seemingly â inactiveâ DNMT3B isoforms may influence genomic methylation patterns in vivo.
    • A Monte Carlo test of linkage disequilibrium for single nucleotide polymorphisms

      Xu, Hongyan; George, Varghese; Department of Biostatistics and Epidemiology (2011-04-14)
      Background: Genetic association studies, especially genome-wide studies, make use of linkage disequilibrium(LD) information between single nucleotide polymorphisms (SNPs). LD is also used for studying genome structure and has been valuable for evolutionary studies. The strength of LD is commonly measured by r2, a statistic closely related to the Pearson's x2 statistic. However, the computation and testing of linkage disequilibrium using r2 requires known haplotype counts of the SNP pair, which can be a problem for most population-based studies where the haplotype phase is unknown. Most statistical genetic packages use likelihood-based methods to infer haplotypes. However, the variability of haplotype estimation needs to be accounted for in the test for linkage disequilibrium.
    • NF-Y Recruits Both Transcription Activator and Repressor to Modulate Tissue- and Developmental Stage-Specific Expression of Human γ-Globin Gene

      Zhu, Xingguo; Wang, Yongchao; Pi, Wenhu; Liu, Hui; Wickrema, Amittha; Tuan, Dorothy; Department of Biochemistry and Molecular Biology (2012-10-10)
      The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.
    • Sodium-coupled monocarboxylate transporters in normal tissues and in cancer.

      Ganapathy, Vadivel; Thangaraju, Muthusamy; Gopal, Elangovan; Martin, Pamela M; Itagaki, Shiro; Miyauchi, Seiji; Prasad, Puttur D; Department of Biochemistry and Molecular Biology (2008-04-30)
      SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na(+)-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and M?�ller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and gamma-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport.
    • TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

      Liu, Feiyan; Hu, Xiaolin; Zimmerman, Mary; Waller, Jennifer L.; Wu, Ping; Hayes-Jordan, Andrea; Lev, Dina; Liu, Kebin; Department of Biochemistry and Molecular Biology; Department of Biostatistics and Epidemiology (2011-01-17)
      null
    • Uracils at nucleotide position 9â 11 are required for the rapid turnover of miR-29 family

      Zhang, Zhuo; Zou, Jun; Wang, Guo-Kun; Zhang, Jun-Tao; Huang, Shuang; Qin, Yong-Wen; Jing, Qing; Department of Biochemistry and Molecular Biology (2011-02-1)
      MicroRNAs are endogenous small RNA molecules that regulate gene expression. Although the biogenesis of microRNAs and their regulation have been thoroughly elucidated, the degradation of microRNAs has not been fully understood. Here by using the pulseâ chase approach, we performed the direct measurement of microRNA lifespan. Five representative microRNAs demonstrated a general feature of relatively long lifespan. However, the decay dynamic varies considerably between these individual microRNAs. Mutation analysis of miR-29b sequence revealed that uracils at nucleotide position 9â 11 are required for its rapid decay, in that both specific nucleotides and their position are critical. The effect of uracil-rich element on miR-29b decay dynamic occurs in duplex but not in single strand RNA. Moreover, analysis of published data on microRNA expression profile during development reveals that a substantial subset of microRNAs with the uracil-rich sequence tends to be down-regulated compared to those without the sequence. Among them, Northern blotting shows that miR-29c and fruit fly bantam possess a relatively rapid turnover rate. The effect of uracil-rich sequence on microRNA turnover depends on the sequence context. The present work indicates that microRNAs contain sequence information in the middle region besides the sequence element at both ends.