• Activation of the kinin system in the ovary during ovulation: role of endogenous progesterone.

      Brann, Darrell W; Greenbaum, Lowell M; Mahesh, Virendra B; Gao, XiaoXing; Department of Pharmacology and Toxicology; Department of Physiology; Department of Surgery (2003-10-29)
      BACKGROUND: Previous work by our group and others has implicated a role for kinins in the ovulatory process. The purpose of the present study was to elucidate whether endogenous progesterone, which is an intraovarian regulator of ovulation, might be responsible for induction of the kinin system in the ovary during ovulation. The gonadotropin-primed immature rat was used as the experimental model, and the role of endogenous progesterone was explored using the antiprogestin, RU486. RESULTS: The results of the study revealed that RU486 treatment, as expected, significantly attenuated ovulation. Activity of the kinin-generating enzyme, kallikrein, was elevated in the ovary in control animals prior to ovulation with peak values observed at 4 h post hCG, only to fall to low levels at 10 h, with a recovery at 20 h post hCG. RU486 treatment had no significant effect on ovarian kallikrein activity as compared to the control group. Total ovarian kininogen levels in control animals increased significantly at 12-14 h after hCG - coinciding with initiation of ovulation. Thereafter, ovarian kininogen levels fell to low levels at 20 h, only to show a rebound from 24-38 h post-hCG. RU486 treatment had no significant effect on the rise of total ovarian kininogen levels from 12-14 h after hCG; however, from 30-40 h post hCG, RU486-treated animals had significantly higher total ovarian kininogen levels versus control animals, suggesting that endogenous progesterone may act to restrain elevations of kininogens in the post-ovulatory ovary. This robust elevation of ovarian kininogen levels by RU486 was found to be primarily due to an increase in T-kininogen, which is a potent cysteine protease inhibitor. CONCLUSIONS: Taken as a whole, these results suggest that endogenous progesterone does not regulate kallikrein activity or kininogens prior to ovulation, but may provide a restraining effect on T-kininogen levels in the post-ovulatory ovary.
    • Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation

      El-Remessy, Azza B.; Tawfik, Huda E.; Matragoon, Suraporn; Pillai, Bindu; Caldwell, Ruth B.; Caldwell, Robert William; Department of Pharmacology and Toxicology; Vascular Biology Center (2010-11-1)
      Endothelial dysfunction is characterized by reduced bioavailability of NO due to its inactivation to form peroxynitrite or reduced expression of eNOS. Here, we examine the causal role of peroxynitrite in mediating diabetes-induced endothelial dysfunction. Diabetes was induced by STZ-injection, and rats received the peroxynitrite decomposition catalyst (FeTTPs, 15â mg/Kg/day) for 4 weeks. Vasorelaxation to acetylcholine, oxidative-stress markers, RhoA activity, and eNOS expression were determined. Diabetic coronary arteries showed significant reduction in ACh-mediated maximal relaxation compared to controls. Diabetic vessels showed also significant increases in lipid-peroxides, nitrotyrosine, and active RhoA and 50% reduction in eNOS mRNA expression. Treatment of diabetic animals with FeTTPS blocked these effects. Studies in aortic endothelial cells show that high glucose or peroxynitrite increases the active RhoA kinase levels and decreases eNOS expression and NO levels, which were reversed with blocking peroxynitrite or Rho kinase. Together, peroxynitrite can suppress eNOS expression via activation of RhoA and hence cause vascular dysfunction.
    • RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension.

      Barman, Scott A; Zhu, Shu; White, Richard E.; Department of Pharmacology and Toxicology (2009-08-26)
      Pulmonary arterial hypertension (PAH) is a devastating disease characterized by progressive elevation of pulmonary arterial pressure and vascular resistance due to pulmonary vasoconstriction and vessel remodeling as well as inflammation. Rho-kinases (ROCKs) are one of the best-described effectors of the small G-protein RhoA, and ROCKs are involved in a variety of cellular functions including muscle cell contraction, proliferation and vascular inflammation through inhibition of myosin light chain phosphatase and activation of downstream mediators. A plethora of evidence in animal models suggests that heightened RhoA/ROCK signaling is important in the pathogenesis of pulmonary hypertension by causing enhanced constriction and remodeling of the pulmonary vasculature. Both animal and clinical studies suggest that ROCK inhibitors are effective for treatment of severe PAH with minimal risk, which supports the premise that ROCKs are important therapeutic targets in pulmonary hypertension and that ROCK inhibitors are a promising new class of drugs for this devastating disease.