• BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury.

      Bartley, John H; Soltau, Thomas; Wimborne, Hereward J. C.; Kim, Sunjun; Martin-Studdard, Angeline; Hess, David C.; Hill, William D; Waller, Jennifer L.; Carroll, James E; Department of Pediatrics; et al. (2005-03-24)
      BACKGROUND: Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. RESULTS: Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 +/- 59.6 v. 92.9 +/- 32.7 at 3 days after injury; 68.9 +/- 23.4 v. 52.4 +/- 17.1 at 35 days after injury, p < 0.0011). Among the cells which showed differentiation, those which were stained as either microglial or endothelial cells showed a peak increase at three days after the injury in the DG, injured versus non-injured side (30.5 +/- 17.8 v. 2.7 +/- 2.6, p < 0.0002). As in the adult animal, neurogenesis was significantly increased in the DG with injury (15.0 +/- 4.6 v. 5.2 +/- 1.6 at 35 days after injury, p < 0.0002), and this increase was subsequent to the appearance of the other dividing cells. Numbers of new oligodendrocytes were significantly higher in the DG on the non-injured side (7.0 +/- 24.2 v. 0.1 +/- 0.3, p < 0.0002), suggesting that oligodendrocyte synthesis was reduced in the injured hippocampus. CONCLUSION: These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis, much like the adult animal. In addition, H-I insult leads to more neurogenesis than hypoxia alone. This process may play a role in the recovery of the neonatal animal from H-I insult, and if so, enhancement of the process may improve recovery.
    • The role of indoleamine 2, 3 dioxygenase in regulating host immunity to leishmania infection

      Makala, Levi HC; Department of Pediatrics (2012-01-9)
      Pathogen persistence in immune-competent hosts represents an immunological paradox. Increasing evidence suggests that some pathogens, such as, Leishmania major (L. major) have evolved strategies and mechanisms that actively suppress host adaptive immunity. If this notion is correct conventional vaccination therapies may be ineffective in enhancing host immunity, unless natural processes that suppress host immunity are also targeted therapeutically. The key problem is that the basis of pathogen persistence in immune-competent individuals is unknown, despite decades of intense research. This fact, coupled with poor health care and a dearth of effective treatments means that these diseases will remain a scourge on humans unless a better understanding of why the immune system tolerates such infections emerges from research. Indoleamine 2,3-dioxygenase (IDO) has been shown to act as a molecular switch regulating host responses, and IDO inhibitor drugs shown to possess potential in enhancing host immunity to established leishmania infections. It is hoped that this review will help stimulate and help generate critical new knowledge pertaining to the IDO mechanism and how to exploit it to suppress T cell mediated immunity, thus offer an innovative approach to studying the basis of chronic leishmania infection in mice.