• Changes in the RANK/RANKL/OPG Signaling System as a Mechanism of Zoledronate-Induced Osteonecrosis of the Jaw

      Lane, Jonathan; Department of Oral Biology (3/22/2016)
      Bisphosphonates (BPs) are widely used for the treatment of osteoporosis, hypercalcemia of malignancy, skeletal-related events associated with bone metastases, and for managing lytic lesions of multiple myeloma. A serious risk associated with the use of BPs is the development of Bisphosphonate Related Osteonecrosis of the Jaw (BRONJ), a painful and inflamed area of exposed bone in the oral cavity that fails to heal after 6-8 weeks. The cause of BRONJ is unknown, but it is believed to be due primarily to a longterm suppression of bone remodeling, caused by BP’s potent inhibition of osteoclastic activity. At the cellular level, it is generally accepted that bisphosphonates are taken in by osteoclasts at sites of relatively greater bone remodeling, owing to the strong affinity of bisphosphonates for the mineralized matrix and the increased activity of osteoclasts at active sites of resorption. The accumulation of intracellular bisphosphonates ultimately leads to osteoclast dysfunction or apoptosis through the formation of nonhydrolyzable ATP-analogues, or due to inhibition of the mevalonate pathway responsible for synthesis of sterols and lipids necessary for proper cellular membrane structure. However, the refined details of the pathophysiology of BRONJ remain elusive. The RANK/RANKL/OPG system is a well-known signaling pathway for the recruitment and differentiation of osteoclasts. RANK is a surface-bound receptor on osteoclasts, and requires binding of its ligand, RANKL, for cell activation and ultimately resorption of bone. On the other hand, OPG is a soluble decoy receptor for RANKL. Therefore, osteoclastic activity is effectively regulated by the ratio of RANKL to OPG. For years, it has been generally accepted that osteoblasts are the primary source of both RANKL and OPG. However, it is now recognized that the master orchestrator of bone activity, the osteocyte, contributes to the pathway. Furthermore, it has been shown that in localized tissue damage or hypoxia, such as in a dental extraction, immediately adjacent surviving nonapoptotic osteocytes upregulate RANKL and downregulate OPG. It is unknown to what extent BPs may alter the normal osteocyte response to injury and hypoxia or, ultimately, the dynamics of the RANK/RANKL/OPG system. Furthermore, the extent to which this could contribute to the development of BRONJ is unexplored.There is a paucity of studies concerning how the fundamental system responsible for bone remodeling, RANK/RANKL/OPG, is effected by BPs. It may be that changes in this system, especially in signals derived from the osteocyte, contribute to the pathophysiology of BRONJ.