Show simple item record

dc.contributor.authorLima, Victor V.
dc.contributor.authorSpitler, Kathryn M.
dc.contributor.authorChoi, Hyehun
dc.contributor.authorWebb, R. Clinton
dc.contributor.authorTostes, Rita C.
dc.date.accessioned2012-10-26T20:30:47Z
dc.date.available2012-10-26T20:30:47Z
dc.date.issued2012-10-1en_US
dc.identifier.citationClin Sci (Lond). 2012 Oct 1; 123(Pt 8):473-486en_US
dc.identifier.issn1470-8736en_US
dc.identifier.pmid22757958en_US
dc.identifier.doi10.1042/CS20110638en_US
dc.identifier.urihttp://hdl.handle.net/10675.2/805
dc.description.abstractO-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.
dc.rights© 2012 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.subjectReview Articleen_US
dc.subjectS9en_US
dc.titleO-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter?en_US
dc.typeArticleen_US
dc.identifier.pmcidPMC3389386en_US
dc.contributor.corporatenameDepartment of Physiology
refterms.dateFOA2019-04-10T00:55:58Z
html.description.abstractO-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.


Files in this item

Thumbnail
Name:
cs1230473.pdf
Size:
699.5Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record