IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes
Authors
Usuki, SeigoTsai, Ying-Ying
Morikawa, Keiko
Nonaka, Shota
Okuhara, Yasuhide
Kise, Mitsuo
Yu, Robert K.
Issue Date
2011-12-14
Metadata
Show full item recordAbstract
Background: The pathology of diabetic neuropathy involves oxidative stress on pancreatic b-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl b-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic b-cells remains unknown.Methodology/Principal Findings: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet b-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting b-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic b-cells.
Conclusion/Significance: These findings suggest that PR-ASG may affect pancreatic b-cells through the activation of an IGF- 1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy..
Citation
PLoS One. 2011 Dec 14; 6(12):e28693ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0028693
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Antimycotic Ciclopirox Olamine in the Diabetic Environment Promotes Angiogenesis and Enhances Wound HealingKo, Sae Hee; Nauta, Allison; Morrison, Shane D.; Zhou, Hongyan; Zimmermann, Andrew; Gurtner, Geoffrey C.; Ding, Sheng; Longaker, Michael T.; McNeil, Paul L.; Department of Cellular Biology and Anatomy; et al. (2011-11-18)Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.
-
Dihydrotestosterone Ameliorates Degeneration in Muscle, Axons and Motoneurons and Improves Motor Function in Amyotrophic Lateral Sclerosis Model MiceYoo, Young-Eun; Ko, Chien-Ping; Mei, Lin; Department of Neurology (2012-05-14)Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT), which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.
-
GIP-Overexpressing Mice Demonstrate Reduced Diet-Induced Obesity and Steatosis, and Improved Glucose HomeostasisKim, Su-Jin; Nian, Cuilan; Karunakaran, Subashini; Clee, Susanne M.; Isales, Carlos M.; McIntosh, Christopher H. S.; Department of Orthopaedic Surgery; Department of Cellular Biology and Anatomy (2012-07-3)Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert b-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM). In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg) mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced b-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis.