The Functional Upregulation of Piriform Cortex Is Associated with Cross-Modal Plasticity in Loss of Whisker Tactile Inputs
Abstract
Background: Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity.Methodology/Principal Findings: In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity.
Conclusion/Significance: An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.
Citation
PLoS One. 2012 Aug 21; 7(8):e41986ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0041986
Scopus Count
Related articles
- Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit.
- Authors: Ni H, Huang L, Chen N, Zhang F, Liu D, Ge M, Guan S, Zhu Y, Wang JH
- Issue date: 2010 Oct 29
- Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs.
- Authors: Zhang G, Gao Z, Guan S, Zhu Y, Wang JH
- Issue date: 2013 Jan 3
- Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
- Authors: Huang W, Armstrong-James M, Rema V, Diamond ME, Ebner FF
- Issue date: 1998 Dec
- Neural Coding of Whisker-Mediated Touch in Primary Somatosensory Cortex Is Altered Following Early Blindness.
- Authors: Ramamurthy DL, Krubitzer LA
- Issue date: 2018 Jul 4
- Microglia enable cross-modal plasticity by removing inhibitory synapses.
- Authors: Hashimoto A, Kawamura N, Tarusawa E, Takeda I, Aoyama Y, Ohno N, Inoue M, Kagamiuchi M, Kato D, Matsumoto M, Hasegawa Y, Nabekura J, Schaefer A, Moorhouse AJ, Yagi T, Wake H
- Issue date: 2023 May 30
Related items
Showing items related by title, author, creator and subject.
-
What the â Moonwalkâ Illusion Reveals about the Perception of Relative Depth from MotionKromrey, Sarah; Bart, Evgeniy; Hegéd, Jay; Brain & Behavior Discovery Institute; Vision Discovery Institute; Department of Ophthalmology (2011-06-22)When one visual object moves behind another, the object farther from the viewer is progressively occluded and/or disoccluded by the nearer object. For nearly half a century, this dynamic occlusion cue has beenthought to be sufficient by itself for determining the relative depth of the two objects. This view is consistent with the self-evident geometric fact that the surface undergoing dynamic occlusion is always farther from the viewer than the occluding surface. Here we use a contextual manipulation ofa previously known motion illusion, which we refer to as theâ Moonwalkâ illusion, to demonstrate that the visual system cannot determine relative depth from dynamic occlusion alone. Indeed, in the Moonwalk illusion, human observers perceive a relative depth contrary to the dynamic occlusion cue. However, the perception of the expected relative depth is restored by contextual manipulations unrelated to dynamic occlusion. On the other hand, we show that an Ideal Observer can determine using dynamic occlusion alone in the same Moonwalk stimuli, indicating that the dynamic occlusion cue is, in principle, sufficient for determining relative depth. Our results indicate that in order to correctly perceive relative depth from dynamic occlusion, the human brain, unlike the Ideal Observer, needs additionalsegmentation information that delineate the occluder from the occluded object. Thus, neural mechanisms of object segmentation must, in addition to motion mechanisms that extract information about relative depth, play a crucial role in the perception of relative depth from motion.
-
Different Neuroplasticity for Task Targets and DistractorsSpingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.; Brain & Behavior Discovery Institute; Graduate Program in Neuroscience; Department of Neurology (2011-01-31)Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective increases in response over a broad cortical locus that includes the representation of the task target, and selective suppression of responses to the task distractor within this locus.
-
Fragment-Based Learning of Visual Object Categories in Non-Human PrimatesKromrey, Sarah; Maestri, Matthew; Hauffen, Karin; Bart, Evgeniy; Hegéd, Jay; Brain & Behavior Discovery Institute; Vision Discovery Institute; Department of Ophthalmology (2010-11-24)When we perceive a visual object, we implicitly or explicitly associate it with an object category we know. Recent research has shown that the visual system can use local, informative image fragments of a given object, rather than the whole object, to classify it into a familiar category. We have previously reported, using human psychophysical studies, that when subjects learn new object categories using whole objects, they incidentally learn informative fragments, even when not required to do so. However, the neuronal mechanisms by which we acquire and use informative fragments, as well as category knowledge itself, have remained unclear. Here we describe the methods by which we adapted the relevant human psychophysical methods to awake, behaving monkeys and replicated key previous psychophysical results. This establishes awake, behaving monkeys as a useful system for future neurophysiological studies not only of informative fragments in particular, but also of object categorization and category learning in general.