Cell Membrane Disruption Stimulates NO/PKG Signaling and Potentiates Cell Membrane Repair in Neighboring Cells
Abstract
Resealing of a disrupted plasma membrane at the micron-diameter range requires Ca2+-regulated exocytosis. Repeated membrane disruptions reseal more quickly than the initial wound, and this potentiation of membrane resealing persists for at least 24 hours after the initial wound. Long-term potentiation of membrane resealing requires CREB-dependent gene expression, which is activated by the PKC- and p38 MAPK-dependent pathway in a wounded cell. The present study demonstrates that membrane resealing is potentiated in both wounded and neighboring cells in MDCK cells. Wounding of cells expressing CREB133, a mutant variant of CREB, does not show the potentiated response of cell membrane resealing in either wounded or neighboring cells. Furthermore, wounding of cells induces CREB phosphorylation, not only in wounded cells, but also in neighboring cells. Inhibition of the nitric oxide/PKG signaling pathway suppresses CREB phosphorylation in neighboring cells, but not in wounded cells. The potentiation of membrane resealing in neighboring cells is suppressed if the nitric oxide/PKG pathway is inhibited during the initial wound. Together, these results suggest that the nitric oxide/PKG pathway stimulates CREB phosphorylation in neighboring cells so that subsequent cell membrane disruptions of the neighboring cells reseal more quickly.Citation
PLoS One. 2012 Aug 7; 7(8):e42885ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0042885
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Forced Notch Signaling Inhibits Commissural Axon Outgrowth in the Developing Chick Central Nerve SystemShi, Ming; Liu, Zhirong; Lv, Yonggang; Zheng, Minhua; Du, Fang; Zhao, Gang; Huang, Ying; Chen, Jiayin; Han, Hua; Ding, Yuqiang; et al. (2011-01-21)Background: A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown.
-
The Influence of Porphyromonas gingivalis Fimbrial Expression on Human Dendritic Cell Signaling and Innate Immune Homeostatic FunctionsMeghil, Mohamed; Biomedical Sciences (Augusta University, 05-2019)Perturbation of fundamental processes of immune homeostasis, such as apoptosis and autophagy, can result in dire consequences such as autoimmune diseases. Periodontitis is an inflammatory oral disease that is characterized by oral microbial dysbiosis, and deregulation of the host immune response. The aim of this study was to elucidate the underlying mechanisms by which Porphyromonas gingivalis (P. gingivalis) manipulates dendritic cell (DC) signaling to perturb immune homeostasis. Using a combination of Western blotting, flow cytometry, qRT-PCR and immunofluorescence analysis, we show a pivotal role for the minor (Mfa1) fimbriae of P. gingivalis in nuclear/cytoplasmic shuttling of Akt and FOXO1. Mfa1-induced Akt nuclear localization and activation ultimately induced mTOR. The upregulated Akt/mTOR axis was shown to downregulate the intracellular levels of LC3II, an autophagy protein also designated Atg8, required for autophagosome formation and maturation. Further studies utilizing the allosteric panAkt inhibitor MK2206 and rapamycin an mTOR inhibitor confirmed that the activation of Akt/mTOR signaling by P. gingivalis inhibited autophagy in DCs. Concomitant with inhibiting autophagy, we show a pivotal role for Mfa1 fimbriated P. gingivalis in induction of the antiapoptotic protein BCL2, decreased caspase-3 cleavage and decreased expression of pro-apoptotic proteins Bax and Bim in infected DCs, ultimately blocking programmed death of infected DC cells. Importantly, we show that, by using ABT-199 peptide to disrupt interaction of antiapoptotic BCL2 and its proapoptotic partners BAK/BAX, we can restore programmed cell death to P. gingivalis-infected DC cells. In summary, we have identified the underlying mechanism utilized by P. gingivalis to promote the survival of its host immune cells while preventing its own autophagic elimination.
-
Signaling Mechanism of Blood-Retinal Barrier Regulation: Role of Mitogen-ActivatedYang, Jinling; Department of Cellular Biology and Anatomy (2011-03)Breakdown of the blood-retinal barrier (BRB) is an early hallmark of diabetic retinopathy. A critical component in retinal vascular hyper-permeability is increased production of vascular endothelial growth factor (VEGF). VEGF is a potent permeability factor that activates mitogen-activated protein (MAP) kinases. Pigment epithelium-derived factor (PEDF), an endogenous anti-permeability factor, blocks VEGF-induced vascular permeability increase. However, the mechanisms underlying the actions of VEGF and PEDF in regulating endothelial permeability are not yet clear. Previous studies in our laboratory have shown that VEGF induces paracellular permeability via beta-catenin nuclear translocation/transcriptional activation and subsequent upregulation of urokinase plasminogen activator receptor (uPAR). This current study tests the role of two MAP kinases, p38 and extracellular-signal regulated kinase (ERK), in regulating VEGFinduced beta-catenin signaling, uPAR expression and BRB breakdown. We also evaluate the effects of PEDF on this VEGF permeability inducing pathway. The role of MAP kinase in this VEGF permeability inducing pathway was first evaluated using inhibitors of p38 and ERK. These inhibitors preserve the endothelial barrier function upon VEGF treatment. In confluent endothelial cells, cytosolic beta-catenin is phosphorylated by glycogen synthase kinase (GSK) then ubiquitinated and degraded. With VEGF treatment, GSK is phosphorylated/inactive followed by beta-catenin cytosolic accumulation, nuclear translocation and subsequent uPAR expression. These effects were blocked by MAP kinases inhibitors. This indicates p38 and ERK as mediators of VEGF-induced beta-catenin signaling, uPAR expression and endothelial barrier breakdown. Next, it was found that PEDF not only blocks VEGF-induced endothelial permeability increase and MAP kinase activation but also prevents the activation of GSK/beta-catenin signaling as well as uPAR expression. However, PEDF did not block VEGF receptor-2 (VEGFR-2) phosphorylation suggesting that PEDF acts downstream of VEGFR-2 and upstream of MAP kinase level. To further evaluate the role of p38 in regulating VEGF-induced permeability, adenovirusmediated delivery of p38alpha mutants was used. One p38alpha mutant has an altered ATP-binding site thus looses its activity. It is more efficient in blocking VEGF-induced GSK/beta-catenin signaling, uPAR expression and paracellular permeability increase. This study identifies p38alpha and ERK as mediators of VEGF permeability-inducing signaling. They could also serve as potential therapeutic targets for diseases featured by blood-retinal barrier dysfunction.