• Analysis of Wilms Tumors Using SNP Mapping Array-Based Comparative Genomic Hybridization

      Hawthorn, Lesleyann; Cowell, John K.; GHSU Cancer Center (2011-04-22)
      Wilms tumor (WT) has been a model to study kidney embryogenesis and tumorigenesis and, although associated with hereditary, cancer predisposition syndromes, the majority of tumors occur sporadically. To analyze genetic changes in WT we have defined copy number changes and loss of heterozygosity in 56 Wilms tumors using high resolution oligonucleotide arrays at a average resolution of â ¼12 Kb. Consistent deletions were seen on chromosomes 1p, 4q, 7p, 9q, 11p, 11q, 14q, 16q, and 21q. High frequency gains were seen for 1q and lower frequency gains were seen on 7q and chromosomes 8, 12 and 18. The high resolution provided by the SNP mapping arrays has defined minimal regions of deletion for many of these LOH events. Analysis of CNAs by tumor stage show relatively stable karyotypes in stage 1 tumors and more complex aCGH profiles in tumors from stages 3â 5.
    • Novel Somatic Mutations to PI3K Pathway Genes in Metastatic Melanoma

      Shull, Austin Y.; Latham-Schwark, Alicia; Ramasamy, Poornema; Leskoske, Kristin; Oroian, Dora; Birtwistle, Marc R.; Buckhaults, Phillip J.; GHSU Cancer Center (2012-08-17)
      Background: BRAFV600 inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAFV600 inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drugâ s effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAFV600 mutations and contribute to chemotherapeutic resistance.