• Genome-Wide DNA Methylation Maps in Follicular Lymphoma Cells Determined by Methylation-Enriched Bisulfite Sequencing

      Choi, Jeong-Hyeon; Li, Yajun; Guo, Juyuan; Pei, Lirong; Rauch, Tibor A.; Kramer, Robin S.; Macmil, Simone L.; Wiley, Graham B.; Bennett, Lynda B.; Schnabel, Jennifer L.; et al. (2010-09-29)
      Background: Follicular lymphoma (FL) is a form of non-Hodgkin's lymphoma (NHL) that arises from germinal center (GC) B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL.
    • De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system

      Peterson, Mark P; Whittaker, Danielle J; Ambreth, Shruthi; Sureshchandra, Suhas; Buechlein, Aaron; Podicheti, Ram; Choi, Jeong-Hyeon; Lai, Zhao; Mockatis, Keithanne; Colbourne, John K.; et al. (2012-07-9)
      Background: Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.
    • Targeted bisulfite sequencing by solution hybrid selection and massively parallel sequencing

      Lee, Eun-Joon; Pei, Lirong; Srivastava, Gyan; Joshi, Trupti; Kushwaha, Garima; Choi, Jeong-Hyeon; Robertson, Keith D.; Wang, Xinguo; Colbourne, John K.; Zhang, Lu; et al. (2011-10-23)
      We applied a solution hybrid selection approach to the enrichment of CpG islands (CGIs) and promoter sequences from the human genome for targeted high-throughput bisulfite sequencing. A single lane of Illumina sequences allowed accurate and quantitative analysis of ~1 million CpGs in more than 21â 408 CGIs and more than 15â 946 transcriptional regulatory regions. Of the CpGs analyzed, 77â 84% fell on or near capture probe sequences; 69â 75% fell within CGIs. More than 85% of capture probes successfully yielded quantitative DNA methylation information of targeted regions. Differentially methylated regions (DMRs) were identified in the 5â ²-end regulatory regions, as well as the intra- and intergenic regions, particularly in the X-chromosome among the three breast cancer cell lines analyzed. We chose 46 candidate loci (762 CpGs) for confirmation with PCR-based bisulfite sequencing and demonstrated excellent correlation between two data sets. Targeted bisulfite sequencing of three DNA methyltransferase (DNMT) knockout cell lines and the wild-type HCT116 colon cancer cell line revealed a significant decrease in CpG methylation for the DNMT1 knockout and DNMT1, 3B double knockout cell lines, but not in DNMT3B knockout cell line. We demonstrated the targeted bisulfite sequencing approach to be a powerful method to uncover novel aberrant methylation in the cancer epigenome. Since all targets were captured and sequenced as a pool through a series of single-tube reactions, this method can be easily scaled up to deal with a large number of samples.