• Linear Approaches to Intramolecular Forster Resonance Energy Transfer Probe Measurements for Quantitative Modeling

      Birtwistle, Marc R.; von Kriegsheim, Alexander; Kida, Katarzyna; Schwarz, Juliane P.; Anderson, Kurt I.; Kolch, Walter; GHSU Cancer Center (2011-11-16)
      Numerous unimolecular, genetically-encoded Forster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted Ralt) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on Ralt are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.
    • Novel Somatic Mutations to PI3K Pathway Genes in Metastatic Melanoma

      Shull, Austin Y.; Latham-Schwark, Alicia; Ramasamy, Poornema; Leskoske, Kristin; Oroian, Dora; Birtwistle, Marc R.; Buckhaults, Phillip J.; GHSU Cancer Center (2012-08-17)
      Background: BRAFV600 inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAFV600 inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drugâ s effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAFV600 mutations and contribute to chemotherapeutic resistance.