Retinal Microglial Activation and Inflammation Induced by Amadori-Glycated Albumin in a Rat Model of Diabetes
Authors
Ibrahim, Ahmed S.El-Remessy, Azza B.
Matragoon, Suraporn
Zhang, Wenbo
Patel, Yogin
Khan, Sohail
Al-Gayyar, Mohammed M H
El-Shishtawy, Mamdouh M.
Liou, Gregory I.
Issue Date
2011-03-22
Metadata
Show full item recordAbstract
OBJECTIVE: During diabetes, retinal microglial cells are activated to release inflammatory cytokines that initiate neuronal loss and bloodâ retinal barrier breakdown seen in diabetic retinopathy (DR). The mechanism by which diabetes activates microglia to release those inflammatory mediators is unclear and was therefore elucidated.RESEARCH DESIGN AND METHODS: Microglia activation was characterized in streptozocin-injected rats and in isolated microglial cells using immunofluorescence, enzyme-linked immunosorbent assay, RT-PCR, and Western blot analyses.
RESULTS: In 8-week diabetic retina, phospho-extracellular signalâ related kinase (ERK) and P38 mitogen-activated protein kinases were localized in microglia, but not in Mueller cells or astrocytes. At the same time, Amadori-glycated albumin (AGA)-like epitopes were featured in the regions of microglia distribution, implicating a pathogenic effect on microglial activation. To test this, diabetic rats were treated intravitreally with A717, a specific AGA-neutralizing antibody, or murine IgG. Relative to nondiabetic rats, diabetic rats (IgG-treated) manifested 3.9- and 7.9-fold increases in Iba-1 and tumor necrosis factor (TNF)-α mRNAs, respectively. Treatment of diabetic rats with A717 significantly attenuated overexpression of these mRNAs. Intravitreal injection of AGA per se in normal rats resulted in increases of Iba-1 expression and TNF-α release. Guided by these results, a cultured retinal microglia model was developed to study microglial response after AGA treatment and the mechanistic basis behind this response. The results showed that formation of reactive oxygen species and subsequent activation of ERK and P38, but not Jun NH2-terminal kinase, are molecular events underpinning retinal microglial TNF-α release during AGA treatment.
CONCLUSIONS: These results provide new insights in understanding the pathogenesis of early DR, showing that the accumulated AGA within the diabetic retina elicits the microglial activation and secretion of TNF-α. Thus, intervention trials with agents that neutralize AGA effects may emerge as a new therapeutic approach to modulate early pathologic pathways long before the occurrence of vision loss among patients with diabetes.
Citation
Diabetes. 2011 Apr 22; 60(4):1122-1133ae974a485f413a2113503eed53cd6c53
10.2337/db10-1160
Scopus Count
Related articles
- Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation.
- Authors: Ibrahim AS, El-Shishtawy MM, Peña A Jr, Liou GI
- Issue date: 2010 Oct 8
- miR-124 Regulates Amadori-Glycated Albumin-Induced Retinal Microglial Activation and Inflammation by Targeting Rac1.
- Authors: Dong N, Xu B, Shi H, Lu Y
- Issue date: 2016 May 1
- Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro.
- Authors: Liu W, Xu GZ, Jiang CH, Tian J
- Issue date: 2011 Jan 25
- AGEs mediated expression and secretion of TNF alpha in rat retinal microglia.
- Authors: Wang AL, Yu AC, He QH, Zhu X, Tso MO
- Issue date: 2007 May
- Baicalein reduces inflammatory process in a rodent model of diabetic retinopathy.
- Authors: Yang LP, Sun HL, Wu LM, Guo XJ, Dou HL, Tso MO, Zhao L, Li SM
- Issue date: 2009 May