• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    The Role of contralateral cerebrovascular myogenic dysfunction in stroke

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Coucha, Maha, 2014.pdf
    Size:
    17.47Mb
    Format:
    PDF
    Download
    Authors
    Coucha, Maha
    Issue Date
    2014-06
    URI

    http://hdl.handle.net/10675.2/624180
    
    Metadata
    Show full item record
    Abstract
    Acute ischemic stroke (AIS) is the fourth leading cause of death and disability in the United States. The only successful therapeutic target identified for the 800,000 annual victims of AIS is the cerebral vasculature. This emphasizes the importance of maintaining a well-functioning vasculature with a well-optimized myogenic tone to supply the necessary nutrients, and even the requisite concentration of neuroprotectant to the jeopardized tissue, but at the same time avoiding hemorrhage. While early studies described that ischemia/reperfusion (I/R) reduces cerebral perfusion in the nonischemic hem1sphere as well, the underlying mechanisms and the impact of this contralateral vascular dysfunction on stroke outcomes have long been neglected. The goal of this proposal is to begin addressing this problem by focusing on the myogenic reactivity in ischemic and contralateral nonischemic hemispheres in experimental models with different stroke severity. Our global hypothesis is that contralateral myogenic dysfunction following 1/R contributes significantly to stroke outcomes. This hypothesis will be tested by I) determining the impact of 1/R on myogenic reactivity in ischemic and contralateral hemispheres, and 2) determining the impact of contralateral myogenic dysfunction in conditions associated with poor stroke outcomes. This study will reveal the critical role of vascular d~function in nonischemic hemisphere in worsening stroke outcomes as well as the underlying mechanisms. The rationale is that once the mechanisms and modulators of cerebrovascular function and perfusion in both hemispheres are known, it will be possible to develop more effective strategies to deliver neuroprotective therapies to improve stroke outcomes and recovery. Moreover, these experiments have the potential to challenge the concept that contralateral hemisphere can serve as a control in preclinical stroke studies.
    Affiliation
    Medical College of Georgia
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.