• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Structure-functional relationship study of glycosyltransferases

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Gu_Yihua_PhD_2008.pdf
    Size:
    3.730Mb
    Format:
    PDF
    Download
    Authors
    Gua, Yihua
    Issue Date
    2008-05
    URI

    http://hdl.handle.net/10675.2/623722
    
    Metadata
    Show full item record
    Abstract
    Gangliosides are a group of functional molecules and are synthesized by glycosyltransferases in a stepwise manner. Mechanism of ganglioside profile change in normal conditions or in diseases is not well understood. Gene regulations, protein structures and catalytic mechanisms of related glycosyltransferases may provide clues to elucidate this phenomenon. In our project, GD3-synthase is used as a model of glycosyltransferases for protein structure-functional relationship study. GD3-synthase is a key enzyme in the ganglioside biosynthetic network. It catalyzes the biosynthesis of ganglioside GD3, which is the entry substrate of biosynthesis of the b- and c- series gangliosides. GD3 is a minor ganglioside in adult vertebrate tissues, while it is highly expressed during embryonic development and in pathological conditions, such as cancer. GD3 is also involved in aging, cell proliferation, and cell differentiation. Aspects that are still poorly understood include: 1) the regulatory mechanisms for change of GD3 levels in normal condition and in diseases, 2) the structure of GD3-synthase, 3) how the structure is related to function, and 4) how the synthesis and degradation of the enzyme are regulated. To carry out the structure-functional relationship study on GD3-synthase, we developed a strategy to obtain a large amount of pure human GD3-synthase for crystallographic analysis. E. coli, yeast, and baculovirus systems were screened for selection of the expression system. Transmembrane domain"truncated human GD3- synthase was expressed in E. coli, but it aggregated into inclusion bodies. The refolded protein did not have enzyme activity. Human GD3-synthase could not be expressed in yeast cells, due to the presence of two yeast-specific stop codons. Although codon optimization was performed, the protein still could not be expressed in yeast cells. The soluble human GD3-synthase with enzymatic activity was expressed in Trichoplusia ni (T. ni) insect cells and secreted into the culture medium. The recombinant protein was purified from the culture medium with a yield of 1.45 mg/L. This is the first report of a procedure for expression and purification of GD3-synthase with a high yield, since the eDNA sequence was determined in 1994. As an alternative strategy, protein modeling was performed to study the structurefunctional relationship of GD3-synthase. Cstii, a bacterial sialyltransferase, was identified as a remote homologue of human GD3-synthase with a low sequence similarity. Cstii and vertebrate sialyltransferases share a similar topology of protein structure, which makes it possible to build the structure of human GD3-synthase by using homology modeling. Sequence comparison (including primary sequence and secondary structure alignments) between Cstii and human GD3-synthase was performed to identify the possible functional sites. Between sialylmotifs L and S, four highly conserved amino acid residues (Asnl88, Prol89, Serl90, and Arg272) were identified. Protein sequence alignment of human sialyltransferases suggests that all conserved residues identified in our study are ST8Sia :subfamily-specific. Functional analysis of these residues in human GD3 -synthase was performed by using site-directed mutational analysis. Mutational analysis of these conserved residues suggests that Asnl88, Serl90, and Arg272 are necessary for enzyme activity. The predicted 3-D structures of human GD3-synthase with docking of substrates support the data of mutational analysis and elucidate the contributions of these residues to the enzymatic activity, which suggests: 1) Asn!88 is acceptor binding-related, 2) Ser190 functions to lock the acceptor substrate, and 3) Arg272 is acceptor binding-related. We also suggest that the protein modeling approach can be applied to structure-functional relationship studies only for those regions, which are highly conserved between vertebrate sialyltransferases and Csti!Cstii, due to the low sequence similarity.
    Affiliation
    Medical College of Georgia
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.