• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    THE ROLE OF GPR109A IN REGULATION OF RETINAL ANGIOGENESIS AND BLOOD-RETINAL BARRIER AS A POTENTIAL THERAPEUTIC TARGET IN DIABETIC RETINOPATHY

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Abdelrahman_gru_1907E_10195.pdf
    Size:
    2.554Mb
    Format:
    PDF
    Download
    Authors
    Abdelrahman, Ammar
    Issue Date
    2020-12
    URI
    http://hdl.handle.net/10675.2/623721
    
    Metadata
    Show full item record
    Abstract
    Currently, treatments of diabetic retinopathy (DR) have limited therapeutic benefits and limited accessibility to the growing diabetic population at risk because of the high expenses and complicated procedures. Inflammation, endothelial dysfunction, and microvascular damage are common features of diabetic complications including DR. GPR109A is the metabolite sensing receptor of beta-hydroxybutyrate (BHB) the principal ketone body in humans. Our previous studies have shown the role of GPR109A expression in promoting anti-inflammatory response in retinal pigmented epithelial (RPE) cells and the relevance of the receptor in DR. Expression of the GPR109A in microvascular endothelial cells (ECs) has been reported recently. However, the relevance of GPR109A expression and activation to retinal EC functions are yet to be studied. Our goal in this study was to identify the role of GPR109A expression and activation in barrier and angiogenic functions of retinal ECs in context of diabetic retinopathy. We used electrical cell impedance sensing (ECIS) technology to evaluate barrier functions in primary human retinal endothelial cells (HRECs) which constitute the inner BRB. Knocking down GPR109A in HRECs with siRNA decreased the transendothelial electrical resistance (TEER) compared to scrambled siRNA. Treating HRECs with BHB increased their TEER and counteracted VEGF-induced barrier disruption through activation of GPR109A and increasing zonula occludens-1 (ZO-1) expression. Treatment of STZ-diabetic mice with exogenous BHB for one month protected against the pathologic albumin leakage induced by diabetes and improved the visual acuity of this animal model of diabetes. Using the mouse model of oxygen induced retinopathy (OIR), we showed that Gpr109a-/- mice had slower vascular recovery from pathologic angiogenesis compared to age matched wild type mice. Moreover, physiologic revascularization of vaso-oblitrated retinas was impaired by loss of GPR109a and associated with dysregulated inflammatory and angiogenic signaling. Collectively, these data point to a role for GPR109A in the regulation of barrier and angiogenic mechanisms in retinal ECs and, promote the receptor as a potential druggable target for impacting these mechanisms in microvascular retinal diseases such as DR.
    Affiliation
    Department of Biochemistry and Molecular Biology
    Description
    Record is embargoed until 12/11/2021
    Collections
    Department of Biochemistry and Molecular Biology Theses and Dissertations
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.