• Login
    View Item 
    •   Home
    • Colleges & Programs
    • Honors Program
    • Honors Program Theses
    • View Item
    •   Home
    • Colleges & Programs
    • Honors Program
    • Honors Program Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Characterization of a Cyclic Peptide (ADO5) as a Novel Inhibitor of the Hsp90 Chaperoning Machine

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Fang, W. (Thesis Final).pdf
    Embargo:
    2025-04-10
    Size:
    1.074Mb
    Format:
    PDF
    Download
    Authors
    Fang, Wayne
    Issue Date
    2020-05
    URI
    http://hdl.handle.net/10675.2/623403
    
    Metadata
    Show full item record
    Abstract
    Protection of oncogenic proteins is the foundation of many hallmarks of cancer. Based on this, hsp90 inhibitors have emerged as a potentially potent strategy for cancer treatment. The clinical efficacy of the earlier Hsp90 inhibitors remains unsatisfactory, in part due to their induction of heat shock response and anti-apoptotic mechanisms in cancer cells. To identify alternative therapeutic agents without these effects, we have developed a cell-free high-throughput screen (HTS) platform based on the folding of progesterone receptor (PR) by the core components of the Hsp90 chaperoning machine. During our initial screening of 175 natural products from North African medicinal plants, we discovered the cyclic peptide AD05 as a novel Hsp90 inhibitor. AD05 has shown a powerful antitumor activity against various cancer cell lines including HeLa, Hs578T, MDA-MB231, MDA-MB453, E0771, THP1, and U937. Western blot analysis revealed that AD05 destabilizes Hsp90 client proteins without inducing heat shock response as indicated by lack of upregulation of Hsp70, Hsp40 and Hsp27. Remarkably, AD05 does not induce apoptosis but rather triggers autophagy in various cell lines.
    Affiliation
    Department of Biological Sciences
    Description
    Record is embargoed until 04/10/2025
    Collections
    Department of Biological Sciences: Student Research and Presentations
    Honors Program Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.