• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    DEFINING THE ROLE OF TROPOMYOSIN-1C IN CARGO TRANSPORT IN DROSOPHILA

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Boggupalli_gru_1907E_10165.pdf
    Size:
    2.973Mb
    Format:
    PDF
    Download
    Authors
    Boggupalli, Shankarappa Devi Prasad
    Issue Date
    2020-05
    URI
    http://hdl.handle.net/10675.2/623251
    
    Metadata
    Show full item record
    Abstract
    Cell polarity is the asymmetric organization of different organelles in a cell, including the plasma membrane and cytoskeleton. Such organization results from asymmetric sorting of proteins, either post-translationally or pre-translationally by messenger RNA localization. In Drosophila oocytes, posterior localization of oskar mRNA is required for germplasm assembly and establishing antero-posterior polarity. oskar mRNA is transported by Kinesin, however the adaptor that links Kinesin to oskar mRNA was not known. In Aim 1 of this thesis, we demonstrate that a novel isoform of Tropomyosin, namely Tm1C, binds directly to kinesin and functions as the adaptor in linking kinesin to oskar mRNA. Oskar expression is limited to female germline, however Tm1C is also expressed in male flies. This suggests that there might be additional cargoes for Tm1C. We attempted to identify novel cargoes of Tm1C by performing a proteomic assay in Drosophila S2 cells. Apart from Khc, we identified Supernumerary limbs (Slmb) as the main interacting partner. Our further investigation of Slmb suggests that it might not be a cargo. Instead, Slmb which is a component of E3 ubiquitin ligase, might regulate the expression of Tm1C. In Aim 2 of the thesis, we show that Slmb regulates the levels of Tm1C by ubiquitinating it and facilitating its degradation by the Proteasome.
    Affiliation
    Department of Cellular Biology and Anatomy
    Collections
    Department of Cellular Biology and Anatomy Theses and Dissertations
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.