• Login
    View Item 
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 21st Annual Phi Kappa Phi Student Research and Fine Arts Conference (2020)
    • 21st Annual PKP Student Research and Fine Arts Conference: Posters
    • View Item
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 21st Annual Phi Kappa Phi Student Research and Fine Arts Conference (2020)
    • 21st Annual PKP Student Research and Fine Arts Conference: Posters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    ATAD3A: a critical driver for head and neck cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Caleb Jensen
    Yong Teng
    Liwei Lang
    Issue Date
    1/15/2020
    URI
    http://hdl.handle.net/10675.2/623110
    
    Metadata
    Show full item record
    Abstract
    For patients with head and neck cancer whose tumors are HPV negative HPV(-), current therapy does not lead to significant longevity and most succumb to loco-regional recurrence of the primary tumor. We discovered that HPV(-) head and neck squamous cell carcinoma (HNSCC) highly expressed ATPase family AAA-domain containing protein 3A (ATAD3A). ATAD3A is the mitochondrial protein, which has been demonstrated as an oncogene in breast and lung cancer. However, nothing has been reported regarding its role in HNSCC. Using the HPV(-) HNSCC cell line HN12 as a cell model, we show here that knockout of ATAD3A expression by CRISPR-CAS9 in HNSCC cells, leading to reduced cell proliferation and decreased the ability of colony formation and anchorage-independent growth in soft agar. Importantly, ATAD3A loss also significantly suppressed HNSCC cells to grow in 3D culture. Together, these findings suggest the potential oncogenic role of ATAD3A in HNSCC cells, and implicate that ATAD3A represents a promising target for better treatment of patients with HPV(-) HNSCC.
    Affiliation
    Biological Sciences
    Description
    Presentation given at the 21th Annual Phi Kappa Phi Student Research and Fine Arts Conference
    Collections
    21st Annual PKP Student Research and Fine Arts Conference: Posters

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.