• Login
    View Item 
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 21st Annual Phi Kappa Phi Student Research and Fine Arts Conference (2020)
    • 21st Annual PKP Student Research and Fine Arts Conference: Oral Symposia VI
    • View Item
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 21st Annual Phi Kappa Phi Student Research and Fine Arts Conference (2020)
    • 21st Annual PKP Student Research and Fine Arts Conference: Oral Symposia VI
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Minimum flow rate in electro-coflow

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Overlie, Benjamin
    Guerrero-Millan, Josefa
    Issue Date
    1/28/2020
    URI
    http://hdl.handle.net/10675.2/623080
    
    Metadata
    Show full item record
    Abstract
    Controlled generation of micron and sub-micron sized drops continues to be of strong interest for the scientific community due to the variety of applications in many different fields. Emulsion drops can be generated by flowing two immiscible liquids inside a glass-based microfluidic device. Their minimum size will be of the order of the tip size. To create smaller drops, an external electric field can be used, similarly to what it is done in the classical electrospray. In electrospray, a liquid is issued into air from an electrified needle. When the flow rate of the liquid is controlled, there is a minimum flow rate below which a cone-jet cannot be formed regardless of the applied voltage. This minimum flow rate gives you the minimum drop size that can be generated, usually one or two orders of magnitude smaller than the tip size. We explore this lower limit in electro-coflow using pressure control instead, and we have found a different result than in electrospray, with a more complex behavior. The use of pressure control and the presence of an outer moving fluid, enrich the dynamics in the minimum flow rate limit.
    Affiliation
    Chemistry and Physics
    Description
    Presentation given at the 21th Annual Phi Kappa Phi Student Research and Fine Arts Conference
    Collections
    21st Annual PKP Student Research and Fine Arts Conference: Oral Symposia VI

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.