• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Immunometabolic Regulation of Myeloid-Lymphoid Interactions Following Traumatic Brain Injury

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Braun_gru_1907E_10138.pdf
    Size:
    68.93Mb
    Format:
    PDF
    Download
    Authors
    Braun, Molly
    Issue Date
    2019-09
    URI
    http://hdl.handle.net/10675.2/622617
    
    Metadata
    Show full item record
    Abstract
    Traumatic brain injury (TBI) is a major public health issue, producing significant patient mortality and poor long-term outcomes. Increasing evidence suggests an important, yet poorly defined, role for the immune system in the development of progressive secondary injury. Herein, we tested the hypothesis that peripheral macrophage infiltration initiates long-lasting adaptive immune responses after TBI. Using a murine controlled cortical impact model, we found increased infiltration and pro-inflammatory (M1) polarization of macrophages for up to three weeks post-TBI. Monocytes purified from the injured brain stimulated the proliferation of naïve T lymphocytes, enhanced the polarization of T effector cells (Teff: TH1/TH17), and decreased the production of regulatory T cells (TREG) in a mixed lymphocyte reaction. Similarly, elevated Teff polarization within both blood and brain tissue was attenuated by myeloid cell depletion after TBI. Functionally, C3H/HeJ (TLR4 mutant) mice reversed both M1 macrophage and TH1/TH17 polarization after TBI, as compared to C3H/OuJ (wild-type) mice. Moreover, brain monocytes isolated from C3H/HeJ mice were less potent stimulators of T lymphocyte proliferation and TH1/TH17 polarization, as compared to C3H/OuJ monocytes. To further elucidate the mechanism underlying this myeloid TLR4-mediated Teff activation, we examined the metabolic regulator, 5’-adenosine monophosphate-activated protein kinase (AMPK), within infiltrating macrophages following TBI. We determined that reduced activation of myeloid AMPK induced the generation of pro-inflammatory, myelin reactive T-cells. Similarly, we detected myelin-laden macrophages within the cerebrospinal fluid of severe TBI patients. Administration of the AMPK activator, metformin, attenuated pro-inflammatory Teff cell generation and enhanced counter-inflammatory TREGs in wild-type mice; however, these effects were lost in myeloid-specific AMPKα1 knockout mice. Activation of AMPK restored myeloid expression and activity of Ten-eleven translocase 2 (TET2), a demethylase that regulated the expression of myeloid PD-L1 after TBI. Moreover, TET2-/- mice exhibited exaggerated T-cell activation in response to TBI. In line with these data, activation of myeloid AMPK reduced the loss of white matter and improved neurobehavioral outcomes after TBI. Our studies identify that immunometabolic dysfunction drives epigenetic regulation of the myeloid-lymphoid transition after TBI; suggesting targeted interventions during the early stage of injury may prevent progressive neurodegeneration.
    Affiliation
    Biomedical Sciences
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.