• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    The Influence of Porphyromonas gingivalis Fimbrial Expression on Human Dendritic Cell Signaling and Innate Immune Homeostatic Functions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Meghil_gru_1907E_10136.pdf
    Size:
    16.10Mb
    Format:
    PDF
    Download
    Authors
    Meghil, Mohamed
    Issue Date
    05-2019
    URI
    http://hdl.handle.net/10675.2/622582
    
    Metadata
    Show full item record
    Abstract
    Perturbation of fundamental processes of immune homeostasis, such as apoptosis and autophagy, can result in dire consequences such as autoimmune diseases. Periodontitis is an inflammatory oral disease that is characterized by oral microbial dysbiosis, and deregulation of the host immune response. The aim of this study was to elucidate the underlying mechanisms by which Porphyromonas gingivalis (P. gingivalis) manipulates dendritic cell (DC) signaling to perturb immune homeostasis. Using a combination of Western blotting, flow cytometry, qRT-PCR and immunofluorescence analysis, we show a pivotal role for the minor (Mfa1) fimbriae of P. gingivalis in nuclear/cytoplasmic shuttling of Akt and FOXO1. Mfa1-induced Akt nuclear localization and activation ultimately induced mTOR. The upregulated Akt/mTOR axis was shown to downregulate the intracellular levels of LC3II, an autophagy protein also designated Atg8, required for autophagosome formation and maturation. Further studies utilizing the allosteric panAkt inhibitor MK2206 and rapamycin an mTOR inhibitor confirmed that the activation of Akt/mTOR signaling by P. gingivalis inhibited autophagy in DCs. Concomitant with inhibiting autophagy, we show a pivotal role for Mfa1 fimbriated P. gingivalis in induction of the antiapoptotic protein BCL2, decreased caspase-3 cleavage and decreased expression of pro-apoptotic proteins Bax and Bim in infected DCs, ultimately blocking programmed death of infected DC cells. Importantly, we show that, by using ABT-199 peptide to disrupt interaction of antiapoptotic BCL2 and its proapoptotic partners BAK/BAX, we can restore programmed cell death to P. gingivalis-infected DC cells. In summary, we have identified the underlying mechanism utilized by P. gingivalis to promote the survival of its host immune cells while preventing its own autophagic elimination.
    Affiliation
    Biomedical Sciences
    Description
    Embargoed until 08/12/2021
    Collections
    Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.