Show simple item record

dc.contributor.authorPatel, Shrey P
dc.date.accessioned2019-02-13T20:07:19Z
dc.date.available2019-02-13T20:07:19Z
dc.date.issued2019-02-13
dc.identifier.urihttp://hdl.handle.net/10675.2/622130
dc.descriptionPresentation given at the 20th Annual Phi Kappa Phi Student Research and Fine Arts Conferenceen
dc.description.abstractThe experiment discusses the role of inverse agonist binding to receptors and how its effect cell signaling. The specific receptors that was focused on in the project was histamine receptor H1 (HRH1) and histamine receptor H2 (HRH2) which are types of G-protein coupled receptors (GPCR). Both receptors are activated when a ligand, specifically a histamine molecule, which binds to the receptor and activates the signaling pathway within the cell. The main protein within the signaling pathway is the G-protein which helps the cascade effect of the signal to other molecules. G-proteins are activated through GTP. An inverse agonist works like an agonist but will have an opposite end effect within the cell. It was originally thought that inverse agonist works the same way as an agonist to recruit a GTP and activate a G-protein for signaling. The experiment being tests tries to explain the opposite that the inverse agonist could activate the protein without GTP and continue to have its effect on the cell. Human embryonic cells were transfected with plasmids that contain sequences for the receptors and the G-protein, which were also tagged with a fluorophore to measure any bioluminescence with interaction of G-protein and the receptor when the ligands binds. From collecting data from the bioluminescence effect, it shows that there is an interaction a receptor and G-protein complex when the inverse agonist is bound.
dc.subjecthistamineen
dc.subjectBRETen
dc.titleTHE MECHANISM OF INVERSE AGONISTS ON HISTAMINE RECEPTORS, HISTAMINE RECEPTOR H1, AND HISTAMINE RECEPTOR H2en
dc.typePoster Presentationen
dc.contributor.departmentDepartment of Phychological Sciencesen
dc.contributor.departmentDepartment of Pharmacology & Toxicologyen
dc.contributor.sponsorLambert, Nevinen
dc.contributor.affiliationAugusta Universityen
html.description.abstractThe experiment discusses the role of inverse agonist binding to receptors and how its effect cell signaling. The specific receptors that was focused on in the project was histamine receptor H1 (HRH1) and histamine receptor H2 (HRH2) which are types of G-protein coupled receptors (GPCR). Both receptors are activated when a ligand, specifically a histamine molecule, which binds to the receptor and activates the signaling pathway within the cell. The main protein within the signaling pathway is the G-protein which helps the cascade effect of the signal to other molecules. G-proteins are activated through GTP. An inverse agonist works like an agonist but will have an opposite end effect within the cell. It was originally thought that inverse agonist works the same way as an agonist to recruit a GTP and activate a G-protein for signaling. The experiment being tests tries to explain the opposite that the inverse agonist could activate the protein without GTP and continue to have its effect on the cell. Human embryonic cells were transfected with plasmids that contain sequences for the receptors and the G-protein, which were also tagged with a fluorophore to measure any bioluminescence with interaction of G-protein and the receptor when the ligands binds. From collecting data from the bioluminescence effect, it shows that there is an interaction a receptor and G-protein complex when the inverse agonist is bound.


This item appears in the following Collection(s)

Show simple item record