• Login
    View Item 
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 19th Annual Phi Kappa Phi Student Research and Fine Arts Conference (2018)
    • 19th Annual PKP Student Research and Fine Arts Conference: Oral Symposia II
    • View Item
    •   Home
    • Conferences, Workshops, Lecture Series, and Symposiums
    • Phi Kappa Phi Student Research and Fine Arts Conference
    • 19th Annual Phi Kappa Phi Student Research and Fine Arts Conference (2018)
    • 19th Annual PKP Student Research and Fine Arts Conference: Oral Symposia II
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    RESONANCE REPULSION IN A COUPLED TORSIONAL OSCILLATOR

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Reeves, William
    Issue Date
    2018-02-12
    URI
    http://hdl.handle.net/10675.2/621717
    
    Metadata
    Show full item record
    Abstract
    A mechanical system is developed and investigated to demonstrate properties of two coupled oscillators. The experimental setup consists of masses clamped to a single steel wire used as a torsion oscillator and optical lever to monitor the motion of the system. Adjustment of the spacing between the masses allows for the coupling strength between the two oscillators to be varied. The primary feature of the system examined in this work is the shifting of the resonant frequencies of the coupled oscillators from the resonant frequencies of the isolated oscillators, an effect known as resonance repulsion. The isolated oscillators are underdamped. The coupling strength between the two oscillators is varied by changing the length of wire between the two. The length was varied by a factor of ten. Damping rates and resonant frequencies of the isolated oscillators are measured in order to model the coupled oscillator system. Theoretical predictions for the magnitude of the resonance repulsion effect are compared to experimentally determined values. For the weakest coupling conditions, where small measurement uncertainties may have a large impact, the disagreement between theory and experimental values for resonance repulsion is only 5%. For conditions of strongest oscillator coupling, the two resonances were observed to separate by a factor of 14.07 when compared to the resonant frequency separation in the uncoupled oscillator. For the strongest coupling case the experimental angular frequency separation is 39.22/s, theoretical is 39.40/s, and the uncoupled separation in the original isolated oscillators is 2.80/s.
    Affiliation
    Department of Chemistry and Physics
    Description
    Presentation given at the 19th Annual Phi Kappa Phi Student Research and Fine Arts Conference
    Collections
    19th Annual PKP Student Research and Fine Arts Conference: Oral Symposia II

    entitlement

     
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.