• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    A resampling method of time course gene expression data for gene network inference

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Garren_PhD_2015.pdf
    Size:
    3.285Mb
    Format:
    PDF
    Download
    Authors
    Garren, Jeonifer Margaret
    Issue Date
    2015
    URI
    http://hdl.handle.net/10675.2/621659
    
    Metadata
    Show full item record
    Abstract
    Manipulation of cellular functions may aid in treatment and/or cure of a disease. Thus, identifying the topology of a gene regulatory network (GRN) and the molecular role of each gene is essential. Discovering GRNs from gene expression data is hampered by intrinsic attributes of the data: small sample size n, large number of variables (genes) p, and unknown error structure. Numerous theoretical approaches for GRN inference attempt to overcome these difficulties; however, most solutions utilized in these methods are to provide either point estimators such as coefficient estimators or make numerous assumptions which are often incompatible with the data. Furthermore, the different solutions cause GRN inference methods to provide inconsistent results. This dissertation proposes a resampling method for time-course gene expression data which can provide interval estimators for existing GRN inference methods without any distributional assumptions via bootstrapping and a statistical model that considers the various components of the data structure such as trend of gene expressions, errors of time-course data, and correlation between genes, etc. This method will produce more precise GRNs that are consistent with observed gene expression data. Furthermore, by applying our method to multiple existing GRN inference methods, the resulting networks obtained from different inference methods could be combined using the joint confidence region for their parameters. Thus, this method can be used for the validation of identified networks and GRN inference methods.
    Affiliation
    Department of Biostatistics
    Collections
    Theses and Dissertations
    Department of Biostatistics and Epidemiology: Theses andDissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.