• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Genetic labeling reveals novel cellular targets of schizophrenia susceptibility gene ERBB4 and neuregulin-1 – ERBB4 signaling in monoamine neurons

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bean_PhD_2015.pdf
    Size:
    8.613Mb
    Format:
    PDF
    Download
    Authors
    Bean, Jonathan C
    Issue Date
    2015
    URI
    http://hdl.handle.net/10675.2/621657
    
    Metadata
    Show full item record
    Abstract
    Neuregulin 1 (NRG1) and its receptor ErbB4 are schizophrenia risk genes. NRG1-ErbB4 signaling plays a critical role in neural development and regulates neurotransmission and synaptic plasticity. Nevertheless, its cellular targets remain controversial. ErbB4 was thought to be expressed in excitatory neurons although recent studies have disputed this view. Utilizing mice that express a fluorescent protein under the promoter of the ErbB4 gene, I determined in what cells ErbB4 is expressed and their identity. ErbB4 was widely expressed in the mouse brain, being highest in amygdala and cortex. Almost all ErbB4-positive cells were GABAergic in cortex, hippocampus, basal ganglia, and most of amygdala in neonatal and adult mice, suggesting GABAergic transmission as a major target of NRG1-ErbB4 signaling in these regions. Non-GABAergic, ErbB4-positive cells were present in thalamus, hypothalamus, midbrain and hindbrain. In particular, ErbB4 was expressed in both dopamine neurons in the substantia nigra and ventral tegmental area and in serotoninergic neurons of raphe nuclei, but not in norepinephrinergic neurons of the locus coeruleus. In hypothalamus, ErbB4 was present in neurons that express oxytocin. ErbB4 was expressed in a group of cells in the subcortical areas that are positive for S100β. These results identify novel cellular targets of NRG1-ErbB4 signaling. Finally, perfusion of NRG1 into the medial prefrontal cortex enhanced both dopamine and serotonin release but with differing time courses.
    Affiliation
    Department of Neuroscience and Regenerative Medicine
    Collections
    Theses and Dissertations
    Department of Neuroscience & Regenerative Medicine Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.