Recent Submissions

  • DEVELOPMENT OF TRANSGENIC ZEBRAFISH MODEL FOR INVESTIGATION OF THE FUNCTION OF MICROGLIA

    Sura, Survasha; Department of Biological Sciences; Department of Biochemical and Molecular Biology; Georgia Cancer Center; Rajpurohit, Surendra K; Augusta University (2019-02-13)
    Zebrafish have emerged as a powerful model organism for elucidating the development and function of microglia. Generation of new transgenic reporter lines and imaging tools strengthen the zebrafish model in microglia study�in-vivo. The aim is to develop a novel compound transgenic line to study the inflammatory process mediated by NF-kB in microglia cells. This novel compound transgenic line will establish a new model for microglia study. To generate the novel compound zebrafish transgenic model for microglia, we are crossbreeding microglia transgenic line zebrafish (Tg(mpeg1:mCherry) with the NF-kB Tg(6xNFkB:EGFP) transgenic progeny. We first generate a heterozygous F1 progeny which will be bred to generate an F2 homozygous progeny. Once the F1 progeny of the Microglia-NfkB transgenic line is developed, they will be crossbred to develop the Homozygous compound transgenic line. Fluorescent Microscopy will be used to screen the larvae generated from the breeding events. By developing the compound transgenic line, we are optimizing microglia isolation and sorting methodology by using the related antibodies as the marker. The NF-kB microglia transgenic line will provide a unique platform for drug screening to address microglial based ailments, thus furthering the understanding and treatment of human disease.
  • Chetomin as a Potent Hsp90 Inhibitor

    Leibou, Stav; Lu, Sumin; Debbab, Abdssamad; Chadli, Ahmed; Georgia Cancer Center (2017-03)
    Molecular chaperones have been the focus of intense research for their important role in cancer cell homeostasis. Heat shock protein 90 (Hsp90) promotes metastasis, evasion of apoptosis, and proliferative angiogenesis in tumors through preserving the stability and functionality of its client proteins [1]. While the first generation of Hsp90 inhibitors has proven effective in hindering Hsp90 function, they have shown low clinical efficacy in part due to the induction of anti-apoptotic proteins Hsp27, Hsp40, and Hsp70 [2,3]. It is therefore our objective to develop novel efficacious Hsp90 inhibitors without these detrimental effects. During our screen for novel Hsp90 inhibitors, we found that the natural product, Chetomin, is a potent inhibitor of the Hsp90 machine chaperoning activity. Our in vitro data using human and murine mammary carcinoma cell lines suggest that Chetomin is effective in causing degradation of several known Hsp90 physiological client proteins that are crucial to cancer cell proliferation and survival. While the molecular mechanism by which Chetomin inhibits the Hsp90 function is still unclear, our data suggests that Chetomin is highly efficacious in killing cancer cells without induction of the anti-apoptotic proteins as does the first generation of Hsp90 inhibitors making Chetomin a promising new therapeutic agent.
  • B-Lymphoid Cells with Attributes of Dendritic Cells Regulate T Cells via Indoleamine 2,3 Dioxygenase

    Johnson, Burles Avner III; Cancer Research Center (2012-04)
    A rare subset of murine dendritic cells expressing the B cell marker CD19 are specialized to express the T cell regulatory enzyme indoleamine 2,3 dioxygenase (IDO-competent DCs). Here we show that IDO-competent DCs expressed Pax5, a transcription factor that maintains B cell lineage commitment, and drives expression of CD19 and surface immunoglobulin (slg). However IDO-competent DCs also exhibited multiple attributes of DCs including DC marker expression and potent T cell stimulatory properties when IDO was not induced. Unexpectedly, DCs expressing IDO were present in B cell deficient mice following TLR9 ligation, indication that B cell receptor (BCR) expression was not required for IDO function. Conversely, DCs from CD19 deficient mice did not express IDO after in vivo TLR9 ligation. This defect was not caused by blockade of IDO-competent DC development in CD19-deficient mice because IDO expression was incduced in these cells by in vitro interferon gamma treatment. Even though DCs from B cell deficient mice expressed IDO following TLR9 ligation, regulatory T cells (Tregs) from B cell deficient mice had impaired suppressor activity. IDO-competent DCs expressed high levels of CD1d-deficient mice. IDO-competent DCs also expressed IL-10 deficient mice to express IDO. Finally we demonstrated that DCs from draining lymph nodes (dLNs) of four week old prediabetic female non obese diabetic (NOD) mice expressed functional IDO following topical treatment with phorbol myristate acetate (PMA). However DCs from dLNs of six week old prediabetic NOD female mice did not express IDO following topical PMA treatment, indicating a critical defect in a specific immunosuppressive mechanism in NOD female mice that coincides with the appearance of insulitis. These data identify IDO competent DCs as a unique B lymphoid lineage cell type that has tightly controlled regulatory properties, and a DC subset whose acquired defect may contribute to autoimmune disease in NOD mice.