Intratumoral Convergence of the TCR Repertoires of Effector and Foxp3+ CD4+ T cells
Authors
Kuczma, MichalKopij, Magdalena
Pawlikowska, Iwona
Wang, Cong-Yi
Rempala, Grzegorz A.
Kraj, Piotr
Issue Date
2010-10-26
Metadata
Show full item recordAbstract
The presence of Foxp3+ regulatory CD4+ T cells in tumor lesions is considered one of the major causes of ineffective immune response in cancer. It is not clear whether intratumoral Treg cells represent Treg cells pre-existing in healthy mice, or arise from tumor-specific effector CD4+ T cells and thus representing adaptive Treg cells. The generation of Treg population in tumors could be further complicated by recent evidence showing that both in humans and mice the peripheral population of Treg cells is heterogenous and consists of subsets which may differentially respond to tumor-derived antigens. We have studied Treg cells in cancer in experimental mice that express naturally selected, polyclonal repertoire of CD4+ T cells and which preserve the heterogeneity of the Treg population. The majority of Treg cells present in healthy mice maintained a stable suppressor phenotype, expressed high level of Foxp3 and an exclusive set of TCRs not used by naive CD4+ T cells. A small Treg subset, utilized TCRs shared with effector T cells and expressed a lower level of Foxp3. We show that response to tumor-derived antigens induced efficient clonal recruitment and expansion of antigen-specific effector and Treg cells. However, the population of Treg cells in tumors was dominated by cells expressing TCRs shared with effector CD4+ T cells. In contrast, Treg cells expressing an exclusive set of TCRs, that dominate in healthy mice, accounted for only a small fraction of all Treg cells in tumor lesions. Our results suggest that the Treg repertoire in tumors is generated by conversion of effector CD4+ T cells or expansion of a minor subset of Treg cells. In conclusion, successful cancer immunotherapy may depend on the ability to block upregulation of Foxp3 in effector CD4+ T cells and/or selectively inhibiting the expansion of a minor Treg subset.Citation
PLoS One. 2010 Oct 26; 5(10):e13623ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0013623
Scopus Count
Related articles
- TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T cells.
- Authors: Kuczma M, Pawlikowska I, Kopij M, Podolsky R, Rempala GA, Kraj P
- Issue date: 2009 Sep 1
- Antigen-specific peripheral shaping of the natural regulatory T cell population.
- Authors: Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh CS
- Issue date: 2008 Dec 22
- An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires.
- Authors: Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY
- Issue date: 2006 Apr
- Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth.
- Authors: Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, Albert J, Sparwasser T, Sakaguchi S, Westendorf AM, Schadendorf D, Buer J, Helfrich I
- Issue date: 2012 Oct 22
- Conventional and Regulatory CD4+ T Cells That Share Identical TCRs Are Derived from Common Clones.
- Authors: Wolf KJ, Emerson RO, Pingel J, Buller RM, DiPaolo RJ
- Issue date: 2016