• Login
    View Item 
    •   Home
    • Colleges & Programs
    • Graduate School
    • 2016 Graduate Research Day
    • View Item
    •   Home
    • Colleges & Programs
    • Graduate School
    • 2016 Graduate Research Day
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Molecular Mechanisms Underlying ATP- And Adenosine Induced Microvascular Endothelial Barrier Preservation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Batori, Robert
    Issue Date
    2016-03
    URI
    http://hdl.handle.net/10675.2/600799
    
    Metadata
    Show full item record
    Abstract
    Endothelial barrier integrity has critical importance in vascular homeostasis. Disruption of the endothelial cell (EC) barrier results in increased vascular permeability. Extracellular purines, ATP and adenosine (Ado) can restore the barrier function, involving the activation of myosin light chain phosphatase (MLCP). Both ATP and Ado increase protein kinase-A (PKA) activity, however a direct link between purine-induced EC barrier enhancement, MLCP and PKA was not described. Here we show that Ado and a stable analog of ATP, ATPγS, induced human lung microvascular EC (HLMVEC) barrier enhancement and PKA activation leads to decrease in MLC and MYPT1T696 phosphorylation. Surprisingly, PKA catalytic subunit (PKAc) depletion attenuates ATPγS, but not Ado-induced increase in transendothelial electrical resistance (TER), indicating that PKA activation is involved in ATP-induced EC barrier enhancement. Depletion of PKAc leads to increase in MLC and MYPTT696 phosphorylation in ATPγS challenged EC supporting the role of PKA in MLCP activation. To elucidate the role of PKA signaling in ATP-induced EC barrier enhancement we depleted several PKA-anchoring proteins (AKAPs). AKAP2 depletion attenuates ATPγS, but not Ado-induced TER increase. Furthermore, AKAP2 co-immunoprecipitates with MYPT1. This interaction was also confirmed by PLA. In conclusion ATP- and Ado-induced barrier enhancement requires different signaling with PKA promoting ATP-, but not Ado-induced EC barrier strengthening.
    Affiliation
    Vascular Biology Center
    Description
    Poster presented at the 2016 Graduate Research Day
    Collections
    2016 Graduate Research Day
    Vascular Biology Center: Student Research and Presentations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.