• Login
    View Item 
    •   Home
    • Colleges & Programs
    • Medical College of Georgia (MCG)
    • Department of Neurology
    • Department of Neurology: Faculty Research and Presentations
    • View Item
    •   Home
    • Colleges & Programs
    • Medical College of Georgia (MCG)
    • Department of Neurology
    • Department of Neurology: Faculty Research and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Vertebrate Lrig3-ErbB Interactions Occur In Vitro but Are Unlikely to Play a Role in Lrig3-Dependent Inner Ear Morphogenesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    pone.0008981.pdf
    Size:
    5.449Mb
    Format:
    PDF
    Download
    Authors
    Abraira, Victoria E.
    Satoh, Takunori
    Fekete, Donna M.
    Goodrich, Lisa V.
    Issue Date
    2010-02-1
    URI
    http://hdl.handle.net/10675.2/577
    
    Metadata
    Show full item record
    Abstract
    Background: The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes.
    Methodology/Principal Findings: Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis.
    Conclusions/Significance: Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.
    Citation
    PLoS One. 2010 Feb 1; 5(2):e8981
    ae974a485f413a2113503eed53cd6c53
    10.1371/journal.pone.0008981
    Scopus Count
    Collections
    Department of Neurology: Faculty Research and Presentations

    entitlement

    Related articles

    • In vivo analysis of Lrig genes reveals redundant and independent functions in the inner ear.
    • Authors: Del Rio T, Nishitani AM, Yu WM, Goodrich LV
    • Issue date: 2013
    • Leucine-rich repeat and immunoglobulin domain-containing protein-1 (Lrig1) negative regulatory action toward ErbB receptor tyrosine kinases is opposed by leucine-rich repeat and immunoglobulin domain-containing protein 3 (Lrig3).
    • Authors: Rafidi H, Mercado F 3rd, Astudillo M, Fry WH, Saldana M, Carraway KL 3rd, Sweeney C
    • Issue date: 2013 Jul 26
    • Cross-repressive interactions between Lrig3 and netrin 1 shape the architecture of the inner ear.
    • Authors: Abraira VE, Del Rio T, Tucker AF, Slonimsky J, Keirnes HL, Goodrich LV
    • Issue date: 2008 Dec
    • Analysis of Netrin 1 receptors during inner ear development.
    • Authors: Matilainen T, Haugas M, Kreidberg JA, Salminen M
    • Issue date: 2007
    • Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear.
    • Authors: Zou D, Silvius D, Rodrigo-Blomqvist S, Enerbäck S, Xu PX
    • Issue date: 2006 Oct 15

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Early Development of the Central and Peripheral Nervous Systems Is Coordinated by Wnt and BMP Signals

      Patthey, Cédric; Gunhaga, Lena; Edlund, Thomas; Mei, Lin; Department of Neurology (2008-02-20)
      The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems.
    • Thumbnail

      beta-Catenin Regulates Intercellular Signalling Networks and Cell-Type Specific Transcription in the Developing Mouse Midbrain-Rhombomere 1 Region

      Chilov, Dmitri; Sinjushina, Natalia; Saarimaki-Vire, Jonna; Taketo, Makoto M.; Partanen, Juha; Mei, Lin; Department of Neurology (2010-06-3)
      b-catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that b-catenin stabilization in mouse midbrain-rhombomere1 region leads to robust upregulation of several Wnt signalling target genes, including Fgf8. Suggestive of direct transcriptional regulation of the Fgf8 gene, b-catenin stabilization resulted in Fgf8 up-regulation also in other tissues, specifically in the ventral limb ectoderm. Interestingly, stabilization of b-catenin rapidly caused down-regulation of the expression of Wnt1 itself, suggesting a negative feedback loop. The changes in signal molecule expression were concomitant with deregulation of anteriorposterior and dorso-ventral patterning. The transcriptional regulatory functions of b-catenin were confirmed by b-catenin loss-of-function experiments. Temporally controlled inactivation of b-catenin revealed a cell-autonomous role for b-catenin in the maintenance of cell-type specific gene expression in the progenitors of midbrain dopaminergic neurons. These results highlight the role of b-catenin in establishment of neuroectodermal signalling centers, promoting region-specific gene expression and regulation of cell fate determination.
    • Thumbnail

      Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour

      Lee, Hyunchul; Leamey, Catherine A.; Sawatari, Atomu; Department of Neurology; College of Graduate Studies (2008-08-20)
      Background: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs).
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.