• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Characterization of the Retinal Phenotype In Methylene Tetrahydrofolate Reductase (Mthfr) Deficient Mice, A Model Of Mild Hyperhomocysteinemia

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Markand_PhD_2015.pdf
    Size:
    7.062Mb
    Format:
    PDF
    Download
    Authors
    Markand, Shanu
    Issue Date
    2015-05
    URI
    http://hdl.handle.net/10675.2/559194
    
    Metadata
    Show full item record
    Abstract
    Homocysteine (hcy), a sulfur containing amino acid, is an integral part of methionine metabolism. Elevated plasma level of hcy (Hhcy) is identified as a risk factor for cardiovascular disorders and implicated in various retinal diseases such diabetic retinopathy, glaucoma, age related macular degeneration and central retinal vein occlusion. Cystathionine β-synthase (CBS) and methylene tetrahydrofolate reductase (MTHFR) are key enzymes of hcy metabolism. CBS catalyzes the transsulfuration pathway yielding beneficial downstream products such as taurine, H2S and glutathione (GSH). MTHFR is required for methylation of hcy. Mutations in MTHFR are the most common genetic cause for Hhcy. Murine models of CBS and MTHFR are an invaluable tools to understand Hhcy pathophysiology in humans. Our lab has reported the retinal phenotype of CBS mutant mice. Depending upon the loss of one or both alleles, mild to marked retinal neurovascular and functional alterations are observed. The data from CBS mutant mice raise an important question: is the retinal neurovasculopathy observed in absence/deficiency of CBS attributed to excess hcy levels or is it due to decline in availability of taurine, H 2S and GSH? This can be addressed by studying the retinal phenotype of MTHFR mutant mice which have an intact CBS pathway. No information is available is currently available about the retinal expression of MTHFR and current data regarding CBS in the mouse retina is contentious. This thesis work tested the hypothesis that CBS and MTHFR are expressed in the mouse retina at gene and protein levels and that Hhcy would induce retinal functional and neurovascular alterations in MTHFR-deficient mice. For gene and protein expression studies, RNA and protein were isolated from retinas for analysis of Cbs and Mthfr gene expression by RT-PCR and protein expression by Western blotting. Eyes were harvested from C57BL6 mice and used for immunodetection of CBS and MTHFR in the retina. RT-PCR revealed robust Cbs and Mthfr expression in retina. Western blotting detected CBS and MTHFR protein in mouse retina. In immunohistochemical studies of the intact retina, CBS was present most abundantly in the ganglion cell layer of WT retina while MTHFR showed widespread retinal expression. Our immunofluorescence studies revealed presence of CBS and MTHFR in retinal ganglion, Müller and RPE cells. Taken together, we have compelling molecular evidence that CBS and MTHFR are expressed in mouse retina at gene and protein levels. These data indicate the underlying importance of hcy metabolism in the retina. For characterization of the retinal phenotype in MTHFR deficient mice, we employed tools such as ERG, Fundus and FA, OCT, HPLC, morphometric, immunohistochemistry (IHC) and PCR arrays. ERG revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/- mice at 24 wks. FA revealed areas of focal vascular leakage in 20% of Mthfr+/- mice at 12-16 wks and 60% by 24 wks suggesting potential vascular damage mediated by Hhcy. SD-OCT revealed a significant decrease in NFL thickness at 24 wks in Mthfr+/- compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 wks in Mthfr+/- mice by HPLC and IHC. Morphometric analysis revealed ∼20% reduction in cells in the ganglion cell layer of Mthfr+/- mice at 24 wks. IHC indicated significantly-increased GFAP labeling suggestive of Müller cell activation. The similar loss of ganglion cells, focal vascular leakage, 2-fold increase in retinal hcy, gliosis and functional abnormities were reported in Cbs+/- mice. Taken together, these data support our hypothesis that Hhcy induces retinal neurovascular and functional alterations in MTHFR deficient mice. In addition, we explored retinal mitochondrial gene alteration as a possible mechanism of Hhcy mediated retinal alterations. PCR array data analysis revealed upregulation of pro-apoptotic genes and downregulation of genes associated with normal mitochondrial transport function. Future studies will validate these results at protein and functional levels. To conclude, our data support the hypothesis that Hhcy may be causative in certain retinal neurovasculopathies. These data contribute to our understanding of the potential effects of Hhcy on the retina and may prove useful in other disease model systems of Hhcy.
    Affiliation
    Department of Cellular Biology and Anatomy
    Collections
    Theses and Dissertations
    Department of Cellular Biology and Anatomy Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.