• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    The Role of Iron Induced Oxidative Stress in Acute Ischemic Stroke and the Potential Role for Fasciculations in their Therapy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Mehta, Shyamal H.
    Issue Date
    2003-07
    URI
    http://hdl.handle.net/10675.2/552234
    
    Metadata
    Show full item record
    Abstract
    (Introductory Paragraphs) Stroke accounts for about one of every 15 deaths in the United States. It is the third leading cause of death behind heart disease and cancer in the United States and the second most common cause of death worldwide, according to the National Center for Health Statistics (1,2). Stroke is also the leading cause of serious disability in the United States; four million people are coping with the debilitating consequences of surviving a stroke which adds to the significant public financial burden (3). Based on the Framingham Heart Study 500,000 people suffer a new or recurrent stroke each year, of whom one third die over the next year, one-third remain permanently disabled and the remaining one-third make a reasonable recovery (1,4). Stroke is a sudden loss of brain function resulting from a disruption in the supply of blood and oxygen to the central nervous system (CNS) giving rise to hypoxic-ischemic conditions within the tissue. Acute stroke can be classified either as: 1. Ischemic stroke involves an interruption in blood supply to the CNS secondary to a vaso-occlusive phenomenon, accounting for 80% of the stroke cases. On basis of its etiology it can be further arbitrarily classified to extra-cranial or intracranial thrombosis and embolism (5). 2. Hemorrhagic stroke involves an interference in blood supply secondary to vascular disruption, accounting for 20% of the cases, which can be further classified to intracranial hemorrhage and subarachnoid hemorrhage (5). A progressing stroke or a stroke in evolution is an extremely complex event whose etiopathogenesis is poorly understood. Its multifactorial etiology makes it difficult to predict and treat by means of clinical, imaging and laboratory data currently available in clinical practice. The hemodynamic changes in the cerebral milieu and the biochemical mechanisms that hasten the progression of neurological injury are crucial to understand in order to reduce neurological morbidity and to design clinically effective interventions. In cerebral ischemia there is an ischemic gradient which can be divided into the core, which is the central ischemic zone and the penumbra, which is the area peripheral to the core. In the penumbra, functional impairment occurs in the neurons and the glia, with the neurons being more susceptible to ischemic injury due their dependence on oxidative metabolism (5). A better understanding of the pathologic mechanisms in ischemic injury would help limit the neurological injury in the penumbra through therapeutic intervention. The major pathogenic mechanisms include energy failure and excitotoxicity, loss of protein translation in the susceptible neurons, apoptotic mechanisms, inflammation and lastly, injury mediated by oxidative stress through the generation of reactive oxygen species (ROS) (6). Many of the above mentioned mechanisms are influenced by the generation of ROS. It has been directly demonstrated in numerous studies that ROS are involved in oxidative damage through peroxidation of lipids, proteins and nucleic acids in ischemic tissues (7). In addition, ROS also function as signaling molecules in cellular ischemia and reperfusion. In this dissertation we tried to elucidate the role of ROS in exacerbation of neurological injury in acute ischemic stroke. In order to gain a better understanding of the pathophysiological mechanisms underlying oxidative stress, we studied iron induced oxidative stress, as iron generates ROS through the Fenton reaction. We believe that ROS exacerbate ischemic injury, hence we wanted to demonstrate the neuroprotective ability of various antioxidants. In the end, we present a model of neuronal behavior in vitro that may have possible implications in post-injury remodeling and repair. Chapter 1 will review the literature in the field of antioxidants and ROS in stroke. In addition, the prevailing theories on the role of iron-induced oxidative stress and the various antioxidant agents used in stroke will be critically reviewed.
    Affiliation
    Department of Physiology
    Collections
    Theses and Dissertations
    Department of Physiology Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.