Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development.
Abstract
BACKGROUND: Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the neurotransmitter gamma-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype suggests that this gene may be involved in the normal development of tissues outside of the CNS. Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic analysis of its embryonic expression outside of the nervous system has been performed. The objective of this study was to define additional structures outside of the central nervous system that express Gad1, indicating those structures that may require its function for normal development. RESULTS: Our analysis detected the localized expression of Gad1 transcripts in several developing tissues in the mouse embryo from E9.0-E14.5. Tissues expressing Gad1 included the tail bud mesenchyme, the pharyngeal pouches and arches, the ectodermal placodes of the developing vibrissae, and the apical ectodermal ridge (AER), mesenchyme and ectoderm of the limb buds. CONCLUSIONS: Some of the sites of Gad1 expression are tissues that emit signals required for patterning and differentiation (AER, vibrissal placodes). Other sites correspond to proliferating stem cell populations that give rise to multiple differentiated tissues (tail bud mesenchyme, pharyngeal endoderm and mesenchyme). The dynamic expression of Gad1 in such tissues suggests a wider role for GABA signaling in development than was previously appreciated.Citation
BMC Dev Biol. 2001 Jan 8; 1:1Related articles
- Domain-restricted expression of two glutamic acid decarboxylase genes in midgestation mouse embryos.
- Authors: Katarova Z, Sekerková G, Prodan S, Mugnaini E, Szabó G
- Issue date: 2000 Sep 4
- Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development.
- Authors: MacLean G, Abu-Abed S, Dollé P, Tahayato A, Chambon P, Petkovich M
- Issue date: 2001 Sep
- The SH2 tyrosine phosphatase shp2 is required for mammalian limb development.
- Authors: Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J, Pawson T
- Issue date: 2000 Apr
- Developmental regulation and asymmetric expression of the gene encoding Cx43 gap junctions in the mouse limb bud.
- Authors: Meyer RA, Cohen MF, Recalde S, Zakany J, Bell SM, Scott WJ Jr, Lo CW
- Issue date: 1997
- IGF-I and insulin in the acquisition of limb-forming ability by the embryonic lateral plate.
- Authors: Dealy CN, Kosher RA
- Issue date: 1996 Jul 10