• Ceramide in Stem Cell Differentiation and Embryo Development: Novel Functions of a Topological Cell-Signaling Lipid and the Concept of Ceramide Compartments

      Bieberich, Erhard; Institute of Molecular Medicine and Genetics (2010-12-29)
      In the last two decades, the view on the function of ceramide as a sole metabolic precursor for other sphingolipids has completely changed. A plethora of studies has shown that ceramide is an important lipid cell-signaling factor regulating apoptosis in a variety of cell types. With the advent of new stem cell technologies and knockout mice for specific steps in ceramide biosynthesis, this view is about to change again. Recent studies suggest that ceramide is a critical cell-signaling factor for stem cell differentiation and cell polarity, two processes at the core of embryo development. This paper discusses studies on ceramide using in vitro differentiated stem cells, embryo cultures, and knockout mice with the goal of linking specific developmental stages to exciting and novel functions of this lipid. Particular attention is devoted to the concept of ceramide as a topological cell-signaling lipid: a lipid that forms distinct structures (membrane domains and vesicles termed â sphingosomeâ ), which confines ceramide-induced cell signaling pathways to localized and even polarized compartments.
    • Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide.

      Krishnamurthy, Kannan; Wang, Guanghu; Rokhfeld, Dmitriy; Bieberich, Erhard; Institute of Molecular Medicine and Genetics; Student Research and Training (STAR) Program, School of Graduate Studies (2009-02-23)
      INTRODUCTION: At physiologic concentration in serum, the bile acid sodium deoxycholate (DC) induces survival and migration of breast cancer cells. Here we provide evidence of a novel mechanism by which DC reduces apoptosis that is induced by the sphingolipid ceramide in breast cancer cells. METHODS: Murine mammacarcinoma 4T1 cells were used in vitro to determine apoptosis and alteration of sphingolipid metabolism by DC, and in vivo to quantify the effect of DC on metastasis. RESULTS: We found that DC increased the number of intestinal metastases generated from 4T1 cell tumors grafted into the fat pad. The metastatic nodes contained slowly dividing cancer cells in immediate vicinity of newly formed blood vessels. These cells were positive for CD44, a marker that has been suggested to be expressed on breast cancer stem cells. In culture, a subpopulation (3 +/- 1%) of slowly dividing, CD44+ cells gave rise to rapidly dividing, CD44- cells. DC promoted survival of CD44+ cells, which was concurrent with reduced levels of activated caspase 3 and ceramide, a sphingolipid inducing apoptosis in 4T1 cells. Z-guggulsterone, an antagonist of the farnesoid-X-receptor, obliterated this anti-apoptotic effect, indicating that DC increased cell survival via farnesoid-X-receptor. DC also increased the gene expression of the vascular endothelial growth factor receptor 2 (Flk-1), suggesting that DC enhanced the initial growth of secondary tumors adjacent to blood vessels. The Flk-1 antagonist SU5416 obliterated the reduction of ceramide and apoptosis by DC, indicating that enhanced cell survival is due to Flk-1-induced reduction in ceramide. CONCLUSIONS: Our findings show, for the first time, that DC is a natural tumor promoter by elevating Flk-1 and decreasing ceramide-mediated apoptosis of breast cancer progenitor cells. Reducing the level or effect of serum DC and elevating ceramide in breast cancer progenitor cells by treatment with Z-guggulsterone and/or vascular endothelial growth factor receptor 2/Flk-1 antagonists may thus be a promising strategy to reduce breast cancer metastasis.
    • Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development

      Wang, G; Bieberich, Erhard; Institute of Molecular Medicine and Genetics (2010-05-27)
      Fetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy. The reason why specific embryonic tissues are sensitive toward ethanol is not understood. We found that in neural crest-derived cell (NCC) cultures from the first branchial arch of E10 mouse embryos, incubation with ethanol increases the number of apoptotic cells by fivefold. Apoptotic cells stain intensely for ceramide, suggesting that ceramide-induced apoptosis mediates ethanol damage to NCCs. Apoptosis is reduced by incubation with CDP-choline (citicoline), a precursor for the conversion of ceramide to sphingomyelin. Consistent with NCC cultures, ethanol intubation of pregnant mice results in ceramide elevation and increased apoptosis of NCCs in vivo. Ethanol also increases the protein level of prostate apoptosis response 4 (PAR-4), a sensitizer to ceramide-induced apoptosis. Prenatal ethanol exposure is concurrent with malformation of parietal bones in 20% of embryos at day E18. Meninges, a tissue complex derived from NCCs, is disrupted and generates reduced levels of TGF-b1, a growth factor critical for bone and brain development. Ethanol-induced apoptosis of NCCs leading to defects in the meninges may explain the simultaneous presence of cranial bone malformation and cognitive retardation in FAS. In addition, our data suggest that treatment with CDP-choline may alleviate the tissue damage caused by alcohol.
    • Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide

      Bieberich, Erhard; MacKinnon, Sarah; Silva, Jeane; Noggle, Scott A; Condie, Brian G.; Institute of Molecular Medicine and Genetics; Department of Medicine (2003-08-4)
      Cell death and survival of neural progenitor (NP) cells are determined by signals that are largely unknown. We have analyzed pro-apoptotic signaling in individual NP cells that have been derived from mouse embryonic stem cells. NP formation was concomitant with elevated apoptosis and increased expression of ceramide and prostate apoptosis response 4 (PAR-4). Morpholino oligonucleotide-mediated antisense knockdown of PAR-4 or inhibition of ceramide biosynthesis reduced stem cell apoptosis, whereas PAR-4 overexpression and treatment with ceramide analogs elevated apoptosis. Apoptotic cells also stained for proliferating cell nuclear antigen (a nuclear mitosis marker protein), but not for nestin (a marker for NP cells). In mitotic cells, asymmetric distribution of PAR-4 and nestin resulted in one nestin(â )/PAR-4(+) daughter cell, in which ceramide elevation induced apoptosis. The other cell was nestin(+), but PAR-4(â ), and was not apoptotic. Asymmetric distribution of PAR-4 and simultaneous elevation of endogenous ceramide provides a possible mechanism underlying asymmetric differentiation and apoptosis of neuronal stem cells in the developing brain.
    • Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cellâ derived neural transplants

      Bieberich, Erhard; Silva, Jeane; Wang, Guanghu; Krishnamurthy, Kannan; Condie, Brian G.; Institute of Molecular Medicine and Genetics (2004-11-22)
      The formation of stem cellâ derived tumors (teratomas) is observed when engrafting undifferentiated embryonic stem (ES) cells, embryoid bodyâ derived cells (EBCs), or mammalian embryos and is a significant obstacle to stem cell therapy. We show that in tumors formed after engraftment of EBCs into mouse brain, expression of the pluripotency marker Oct-4 colocalized with that of prostate apoptosis response-4 (PAR-4), a protein mediating ceramide-induced apoptosis during neural differentiation of ES cells. We tested the ability of the novel ceramide analogue N-oleoyl serinol (S18) to eliminate mouse and human Oct-4(+)/PAR-4(+) cells and to increase the proportion of nestin(+) neuroprogenitors in EBC-derived cell cultures and grafts. S18-treated EBCs persisted in the hippocampal area and showed neuronal lineage differentiation as indicated by the expression of β-tubulin III. However, untreated cells formed numerous teratomas that contained derivatives of endoderm, mesoderm, and ectoderm. Our results show for the first time that ceramide-induced apoptosis eliminates residual, pluripotent EBCs, prevents teratoma formation, and enriches the EBCs for cells that undergo neural differentiation after transplantation.