• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Penalized Least Squares and the Algebraic Statistical Model for Biochemical Reaction Networks

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Linder, Daniel F. II
    Issue Date
    2013-07
    URI
    http://hdl.handle.net/10675.2/348545
    
    Metadata
    Show full item record
    Abstract
    Systems biology seeks to understand the formation of macro structures such as cellular processes and higher level cellular phenomena by investigating the interactions of systems’ individual components. For cellular biology, this goal is to understand the dynamic behavior of biological materials within the cell, a container consisting of smaller materials such as mRNA, proteins, enzymes and other intermediates necessary for regulating intracellular functions and chemical species levels. Understanding these cellular dynamics is needed to help develop new drug therapies, which can be targeted to specific molecules or specific genes, in order to perturb the system for a desired result. In this work we develop inferential procedures to estimate reaction rate coefficients in cellular systems of ordinary differential equations (ODEs) from noisy data arising from realizations of molecular trajectories. It is assumed that these systems obey the so called chemical mass action law of kinetics, with corresponding deterministic mass action limit as the system size becomes infinite. The estimation and inference is based on the penalized least squares estimates, where the covariance structure of these estimates corresponds to the solution of a system of coupled nonautonomuous ODEs. Another topic discussed here is that of network topology estimation. The algebraic statistical model (ASM) offers a means of performing this topological inference for the special class of conic networks. We prove that the ASM recovers the true network topology as the number of samples grows without bound, a property known in the literature as sparsistency. We propose a method to extend the ASM to a wider class of networks that are decomposable into multiple cones.
    Affiliation
    Department of Biostatistics and Epidemiology
    Collections
    Theses and Dissertations
    Department of Biostatistics and Epidemiology: Theses andDissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.