• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Functional Characterization of the P53 Family Protein P63 and the EPHA2 Receptor Tyrosine Kinase, a Novel P53 Family Target Gene

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Dohn, Michael Robert
    Issue Date
    2001-10
    URI
    http://hdl.handle.net/10675.2/344627
    
    Metadata
    Show full item record
    Abstract
    A cell’s ability to survive as part of a multicellular organism often depends on how well it communicates with other cells in its surrounding environment. The need for coordinated and complementary cellular activities requires a means o f sending and receiving signals to and from neighboring cells. This is achieved by the presence of an assortment of proteins both linked to and within the plasma membrane. The plasma membrane acts as a barrier between the intracellular and extracellular milieu, and plasma membrane proteins allow for much o f the communication between these two environments. An important class o f proteins found on the plasma membrane is the superfamily of receptor protein tyrosine kinases (RPTKs). RPTKs are membrane-spanning proteins, that contain domains on both sides of the plasma membrane, joined by a single transmembrane domain (1). Binding of a growth factor or cytokine to the extracellular domain of an RPTK results in receptor dimerization and autophosphorylation o f specific tyrosine residues on the cytosolic domains (1). These phosphotyrosine residues then act as docking sites for cytosolic proteins containing modular structures such as Srchomology- 2 (SH2) and phosphotyrosine binding (PTB) domains (2). Binding of SH2- and PTB-containing proteins initiates an intracellular signaling cascade that often results in the regulation of transcription factors in the nucleus (3-5). It is through these RPTKmediated cascades that many extracellular signals are received by a cell.
    Affiliation
    Department of Biochemistry and Molecular Biology
    Collections
    Theses and Dissertations
    Department of Biochemistry and Molecular Biology Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.