• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    RGS protein modulation of neuronal Gaq-mediated signaling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    Clark, Michael A.
    Issue Date
    2006-05
    URI
    http://hdl.handle.net/10675.2/344556
    
    Metadata
    Show full item record
    Abstract
    The decay of excitatory postsynaptic potentials (EPSPs) in neurons is much shorter than the predicted lifetime of activated G aq and thus GTPase activating proteins (GAPs) are thought to accelerate inactivation. PLCp and regulators of G-protein signaling (RGS) proteins act as GAPs toward G aq in vitro. Thus, it is unknown which of these GAPs determine the fast decay rate observed in neuronal EPSP termination. We therefore test the hypothesis that endogenous RGS proteins regulate the kinetics of Gaqmediated signaling in cultured rat cerebellar granule neurons (CGNs). Electrophysiological recordings of G aq-regulated standing outward potassium currents (Ik(SO>) were performed using mutant RGS-insensitive (RGSi) G aq chimeras. RGS insensitivity was determined by these mutants’ inability to recruit RGS2-EGFP from the nucleus of HEK293 cells to the plasma membrane despite additional mutations that render constitutive activity. Recovery from Ik(so) inhibition mediated by RGSi mutants was 5-fold slower than their wild type counterparts, confirming the necessity of native RGS proteins for rapid termination of G aq mediated signals. In addition to regulating decay of EPSPs, evidence suggests RGS proteins control activation kinetics of G-protein-mediated signals by undetermined mechanisms. We therefore hypothesized that native RGS proteins regulate onset kinetics by acting as physical scaffolds to increase the availability of activated receptors to inactive G aq, bypassing cellular diffusional limitations. Fluorescence recovery after photobleaching (FRAP) was used to determine the diffusional mobility of G aq signaling components in the presence or absence of extracellular crosslinking reagents. Even though M3R recruited RGS2-EGFP to the plasma membrane in HEK293 cells, interaction between these two proteins was extremely transient, as RGS2-EGFP diffusion was unaltered upon immobilization of ECFP-M3R. In addition, G aq-EGFP constrained diffusion when interacting with ECFP-M3R was not further slowed by RGS2 expression. Finally, RGS proteins may act as kinetic scaffolds whereby RGS-accelerated GAP activity leads to multiple rounds of activation/inactivation per receptor-Gaq binding event. A mutation causing increased intrinsic GTPase activity of G aq significantly restored onset rates of G aq activation ( I k (s o > inhibition) in the background of RGS-insensitivity. These results indicate a minimal physical scaffolding function of RGS2 and provide evidence for native RGS protein-mediated kinetic scaffolding contributing to fast G aq activation kinetics observed in CGNs.
    Affiliation
    Department of Pharmacology and Toxicology
    Collections
    Theses and Dissertations
    Department of Pharmacology and Toxicology Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.