Show simple item record

dc.contributor.authorBetancourt-Calle, Soraya V.
dc.date.accessioned2015-02-05T03:21:12Z
dc.date.available2015-02-05T03:21:12Z
dc.date.issued1998-05en
dc.identifier.urihttp://hdl.handle.net/10675.2/344105
dc.description.abstractAldosterone is a steroid hormone secreted by the cells of the zona glomerulosa of teh adrenal gland in response to increases in serum potassium (K+) concentrations, angiotensin II (AngII), and adrenocorticotropic hormone (ACTH). Although all of these agonists stimulate Ca2+ entry, which is required but not sufficient for aldosterone secretion, they generate other intracellular signals that are unique to each agent. in the first part of this study we addressed the possible involvement of Protein Kinase C (PKC) in the actions of these agonists, as measured by the phosphorylation of a specific endogenous substrate of PKC: the myristoylated alanine-rich C-kinase substrate (MARCKS).Both AngII and K+ induced an increase in MARCKS phosphorylation, while ACTH inhibited this response. We conclude that PKC activation is involved in aldosterone secretion stimulated by either AngII or K+ but not by ACTH. Although these three agonists act via different signaling pathways, it seems li9kely that at some point, the transducing events should converge. The transfer of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane is the limiting step in steroidogenesis. the steroidogenic acut regulatory (StAR) protein is through to be a principal mediator of this transfer, with its acute synthesis and phosphorylation thought to be required for steroid production. Thus, StAR activation should be common to the actions of all three agonists. The second part of this study determined 1) the effect of these agonists on StAR protein synthesis and protein phosphorylation, and 2) how these events relate to the secretory response. Stimulation with AngII significantly increased StAR protein synthesis and StAR protein phosphorylation whereas stimulation with K+ significantly increased StAR protein phosphorylation but did not affect StAR protein synthesis. Finally, ACTH significantly increased in both events but the increase in StAR protein phosphorylation was less than that for AngII or K+. We conclude that these agonists differently regulate StAR protein synthesis and protein phosphorylation in cultured bovine adrenal glomerulosa cells. In addition, there is no simple correlation between these events and aldosterone production. These results suggest that StAR may not be the only factor regulating intramitochrondial cholesterol transport and steroid synthesis.
dc.relation.urlhttp://ezproxy.augusta.edu/login?url=http://search.proquest.com/docview/304463063?accountid=12365en
dc.rightsCopyright protected. Unauthorized reproduction or use beyond the exceptions granted by the Fair Use clause of U.S. Copyright law may violate federal law.en
dc.subjectAldosteroneen
dc.subjectPKCen
dc.subjectStARen
dc.titleDifferntial Agonist-induced Signal Transduction Cascades and their Correlation with MARCKS Phosphorylation, StAR Phosphorylation, StAR Protein Synthesis, and Aldosterone Secretion in Cultured Bovine Adrenal Glomerulosa Cellsen
dc.typeDissertationen
dc.contributor.departmentDepartment of Cellular Biology and Anatomyen
dc.description.advisorRasmussen, Howarden
dc.description.degreeDoctor of Philosophy (Ph.D.)en
dc.description.committeeBollag, Wendy; Chew, Catherine; Hill, William D.; McNeil, Paulen
html.description.abstractAldosterone is a steroid hormone secreted by the cells of the zona glomerulosa of teh adrenal gland in response to increases in serum potassium (K+) concentrations, angiotensin II (AngII), and adrenocorticotropic hormone (ACTH). Although all of these agonists stimulate Ca2+ entry, which is required but not sufficient for aldosterone secretion, they generate other intracellular signals that are unique to each agent. in the first part of this study we addressed the possible involvement of Protein Kinase C (PKC) in the actions of these agonists, as measured by the phosphorylation of a specific endogenous substrate of PKC: the myristoylated alanine-rich C-kinase substrate (MARCKS).Both AngII and K+ induced an increase in MARCKS phosphorylation, while ACTH inhibited this response. We conclude that PKC activation is involved in aldosterone secretion stimulated by either AngII or K+ but not by ACTH. Although these three agonists act via different signaling pathways, it seems li9kely that at some point, the transducing events should converge. The transfer of cholesterol from the outer mitochondrial membrane to the inner mitochondrial membrane is the limiting step in steroidogenesis. the steroidogenic acut regulatory (StAR) protein is through to be a principal mediator of this transfer, with its acute synthesis and phosphorylation thought to be required for steroid production. Thus, StAR activation should be common to the actions of all three agonists. The second part of this study determined 1) the effect of these agonists on StAR protein synthesis and protein phosphorylation, and 2) how these events relate to the secretory response. Stimulation with AngII significantly increased StAR protein synthesis and StAR protein phosphorylation whereas stimulation with K+ significantly increased StAR protein phosphorylation but did not affect StAR protein synthesis. Finally, ACTH significantly increased in both events but the increase in StAR protein phosphorylation was less than that for AngII or K+. We conclude that these agonists differently regulate StAR protein synthesis and protein phosphorylation in cultured bovine adrenal glomerulosa cells. In addition, there is no simple correlation between these events and aldosterone production. These results suggest that StAR may not be the only factor regulating intramitochrondial cholesterol transport and steroid synthesis.


This item appears in the following Collection(s)

Show simple item record