• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Biosynthesis of the Vibrio cholerae Kdo-lipid A Domain and its Role in Pathogenesis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hankins_Jessica_PhD_2011.pdf
    Size:
    2.482Mb
    Format:
    PDF
    Download
    Authors
    Hankins, Jessica V.
    Issue Date
    2011-05
    URI
    http://hdl.handle.net/10675.2/325907
    
    Metadata
    Show full item record
    Abstract
    Bacteria assemble remarkable surface structures that interface with their surrounding environment. One such structure is the glycolipid lipopolysaccharide (LPS) that covers the surface of Gram-negative bacteria. LPS is anchored to the bacterial cell by its lipid anchor known as lipid A. Since lipid A is the bioactive component of LPS, modulation of its structure can have a profound impact on disease by altering the host immune response. Additionally, LPS structure directly impacts the outer membrane permeability barrier and bacterial resistance to host antimicrobial peptides. Although the lipid A domain of Escherichia coli has been well characterized, the Vibrio cholerae lipid A biosynthetic pathway has received little attention. The late stages of lipid A biosynthesis include the transfer of the 3-deoxy-Dmanno- octulosonic acid (Kdo) sugars and the secondary acyl chains to the lipid A backbone. Here, the V. cholerae Kdo transferase (Vc0233) was shown to be monofunctional, transferring one Kdo residue to the lipid A precursor, lipid IVA. V. cholerae encode a Kdo kinase (Vc0227) responsible for the phosphorylation of the Kdo residue. The functionality of Vc0227 was shown to be required for the activity of the V. cholerae lipid A LpxL homologue, Vc0213. Interestingly, the addition of the phosphate group on the Kdo sugar was shown to be essential for lipid A secondary acylation in Haemophilus influenzae and Bordetella pertussis. Vc0213 was shown to catalyze the transfer of a myristate (C14:0) to the 2′-position of the V. cholerae phosphorylated Kdolipid A domain. A second protein, Vc0212, acts as an LpxM homologue and transfers 3- hydroxylaurate (3-OH C12:0) to the 3′-position creating hexa-acylated V. cholerae lipid A domain. Although lipid A secondary acyltransferases have been characterized among various Gram-negative bacteria, this is the first report of a lipid A secondary hydroxyacyltransferase. Further, the transfer of 3-hydroxylaurate (3-OH C12:0) was demonstrated to be essential for antimicrobial peptide resistance in V. cholerae and required for activation of the innate immune receptor TLR4.
    Affiliation
    Department of Biochemistry and Molecular Biology
    Description
    The file you are attempting to access is currently restricted to Augusta University. Please log in with your NetID if off campus.
    Collections
    Theses and Dissertations
    Department of Biochemistry and Molecular Biology Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.