• Statistical Methods for reaction Networks

      Odubote, Oluseyi Samuel; Department of Biostatistics and Epidemiology
      Stochastic reaction networks are important tools for modeling many biological phenomena, and understanding these networks is important in a wide variety of applied research, such as in disease treatment and in drug development. Statistical inference about the structure and parameters of reaction networks, sometimes referred to in this setting as model calibration, is often challenging due to intractable likelihoods. Here we utilize an idea similar to that of generalized estimating equations (GEE), which in this context are the so-called martingale estimating equations, for estimation of reaction rates of the network. The variance component is estimated using the approximate variance under the linear noise approximation, which is based on partial dierential equation, or Fokker-Planck equations, which provides an approximation to the exact chemical master equation. The method is applied to data from the plague outbreak at Eyam, England from 1665-1666 and the COVID-19 pandemic data. We show empirically that the proposed method gives good estimates of the parameters in a large volume setting and works well in small volume settings.