• Role of NEK1 in VHL and Cell Cycle Regulation

      Patil, Mallikarjun; Department of Cellular Biology and Anatomy (2013)
      Nekl is the member of NIMA (Never in mitosis gene A) related protein kinase family that is widely expressed in mammals. Nekl is an essential protein because loss of function in Nekl gene causes polycystic kidney disease in mice, which is similar to ADPKD (Autosomal Dominant Polycystic Kidney Disease) in humans. In Humans Nekl mutations also cause short rib polydactyl syndrome characterized by renal cysts and other developmental defects. At the cellular level Nekl thought to regulate ciliogenesis, centrosome duplication and DNA damage response.Nekl mutations leading to PKD have long been attributed to its role in ciliogenesis. Interestingly, VHL (Von hippel lindau) protein a known tumor suppressor is also involved in ciliogenesis.VHL mutations cause cystic kidney disease and renal clear cell carcinoma. Since Nekl and VHL are involved in ciliogenesis and cystic kidney disease, my overall goal was to investigate if Nekl and VHL are part of common regulatory pathway and also to investigate the role of Nekl in cell cycle regulation. My results indicate that Nekl phosphorylates VHL and this has important role in cilia regulation. Nekl phosphorylates VHL on multiple sites and S168 of VHL a site phosphorylated by Nekl significantly affects its stability. Importantly renal cells expressing S168A VHL that cannot be phosphorylated by Nekl grow cilia that are resistant to serum stimulation and Nocodazole treatment. Surprisingly I also found that Nekl is an essential regulator of S phase. Nekl knockdown in HEK cells blocks cell cycle progression. Further characterization Nekl showed that Nekl is needed for S phase progression and DNA replication. Nekl deficient cells have replication stress and activate cell cycle check point. Nekl loads on to chromatin and this increases during replication stress. We have also identified that Nekl interacts with and affects Ku80 loading on to chromatin. These findings have provided novel insights into the Nekl functions, which help in understanding the pathophysiology and development of polycystic kidney disease in mice and short rib polydactyl syndrome mejawski in humans.
    • Modulation of a Conserved Cathepsin B-Like Extracellular Matrix Protein Impacts Wing and Egg Formation in Drosphila Melanogaster

      Dinkins, Michael B; Department of Cellular Biology and Anatomy (2011-03)
      Conserved in Bilaterian species, the tubulointerstitial nephritis antigen (TIN-ag) family of cathepsin B-like extracellular matrix proteins has been proposed to have roles in cell adhesion and regulation of basement membrane assembly based on in vitro studies of mammalian family members. Here we examined the single Drosophila ortholog, CG3074, and found conservation of its basement membrane localization as well as a role in cell adhesion. RNAi knockdown resulted in wing blistering and held-out wings following eclosion, consistent with defects in adhesion of wing epithelia and tendon cells to the underlying extracellular matrix, but no defects were detected during pupal development. We were unable to demonstrate a genetic or physical interaction with laminin and CG3074 but did detect genetic interactions with integrins and dystroglycan in the wing. A serine substitutes for cysteine in all TIN-ag family members at the 'active site' of the cathepsin B-like domain and is predicted to render the protein inactive as a protease. Overexpression of the mutant CG3074 S213C, in which the 'catalytic' cysteine of cathepsin is restored, resulted in gain-of-function defects in egg formation and larval development. We provide genetic and biochemical evidence that these defects arise from a neomorphic activity of the S213C protein that supports a role of this highly conserved domain in wildtype CG3074 function. These studies broaden our understanding of TINag family function and identify tissue and pathway models for future studies.
    • Signaling Mechanism of Blood-Retinal Barrier Regulation: Role of Mitogen-Activated

      Yang, Jinling; Department of Cellular Biology and Anatomy (2011-03)
      Breakdown of the blood-retinal barrier (BRB) is an early hallmark of diabetic retinopathy. A critical component in retinal vascular hyper-permeability is increased production of vascular endothelial growth factor (VEGF). VEGF is a potent permeability factor that activates mitogen-activated protein (MAP) kinases. Pigment epithelium-derived factor (PEDF), an endogenous anti-permeability factor, blocks VEGF-induced vascular permeability increase. However, the mechanisms underlying the actions of VEGF and PEDF in regulating endothelial permeability are not yet clear. Previous studies in our laboratory have shown that VEGF induces paracellular permeability via beta-catenin nuclear translocation/transcriptional activation and subsequent upregulation of urokinase plasminogen activator receptor (uPAR). This current study tests the role of two MAP kinases, p38 and extracellular-signal regulated kinase (ERK), in regulating VEGFinduced beta-catenin signaling, uPAR expression and BRB breakdown. We also evaluate the effects of PEDF on this VEGF permeability inducing pathway. The role of MAP kinase in this VEGF permeability inducing pathway was first evaluated using inhibitors of p38 and ERK. These inhibitors preserve the endothelial barrier function upon VEGF treatment. In confluent endothelial cells, cytosolic beta-catenin is phosphorylated by glycogen synthase kinase (GSK) then ubiquitinated and degraded. With VEGF treatment, GSK is phosphorylated/inactive followed by beta-catenin cytosolic accumulation, nuclear translocation and subsequent uPAR expression. These effects were blocked by MAP kinases inhibitors. This indicates p38 and ERK as mediators of VEGF-induced beta-catenin signaling, uPAR expression and endothelial barrier breakdown. Next, it was found that PEDF not only blocks VEGF-induced endothelial permeability increase and MAP kinase activation but also prevents the activation of GSK/beta-catenin signaling as well as uPAR expression. However, PEDF did not block VEGF receptor-2 (VEGFR-2) phosphorylation suggesting that PEDF acts downstream of VEGFR-2 and upstream of MAP kinase level. To further evaluate the role of p38 in regulating VEGF-induced permeability, adenovirusmediated delivery of p38alpha mutants was used. One p38alpha mutant has an altered ATP-binding site thus looses its activity. It is more efficient in blocking VEGF-induced GSK/beta-catenin signaling, uPAR expression and paracellular permeability increase. This study identifies p38alpha and ERK as mediators of VEGF permeability-inducing signaling. They could also serve as potential therapeutic targets for diseases featured by blood-retinal barrier dysfunction.
    • Mechanisms of Homocysteine-Induced Retinal Ganglion Cell Death

      Ganapathy, Preethi S.; Department of Cellular Biology and Anatomy (2010-12)
      The purpose of these studies was to determine the effect of excess homocysteine on retinal ganglion cell viability. An overview of homocysteine metabolism and the literature concerning homocysteine-induced neurotoxicity is given below, followed by detailed descriptions of the eye, the retina, and retinal ganglion cells.
    • Infiltrating Cells, Interferon-gamma and Intraocular Spread of HSV-1 after Anterior Chamber Injection

      Cathcart, Heather M.; Department of Cellular Biology and Anatomy (2009-12)
      Following uniocular anterior chamber (AC) inoculation of HSV-1 (KOS), the anterior segment of the injected eye becomes inflamed and infected; however, virus does not spread from the anterior segment to infect the retina of the injected eye. The overall goal of this study was to identify interferons (IFNs) and early infiltrating cells which may play a role in protecting the retina of the ipsilateral (injected) eye. Female BALB/c, IFNy-/- and macrophage depleted (clodronate, CI2MBP treated) mice were injected in one AC with 3*104 - 6x104 PFU of HSV-1 (KOS). Mice were killed at various time points ranging from 12 to 120 hours post injection (p.i.). The injected eyes were enucleated, snap frozen and frozen sections were stained with antibodies specific for HSV-1, IFNy, Mac-1 (CD11b), Gr-1, CD49b, F4/80, CD4, CD8 and CD11c. The same antibodies were also used to stain freshly isolated single-cell suspensions from the eye or spleen for flow cytometry. Additionally, whole injected eyes were used to determine gene expression levels of IFNs and IFN associated genes. In the anterior segment of the injected eye, the ciliary body and iris were virus infected and inflamed, and infiltrating cells increased during the period of observation. Mac-1 + and F4/80+ cells colocalized with IFNy in the anterior segment and Mac-1 + cells increased in the injected eye beginning at 24 hours p.i. and continuing through 72 hours p.i. Although virus staining was increased in the ciliary body of macrophage depleted mice at 48 and 72 hours p.i., destructive retinitis was not observed in the injected eye of these animals. IFNy gene expression was up regulated in injected eyes of BALB/c mice from 48 to 120 hours p.i., and while HSV-1 infection of IFNy-/- mice resulted in increased virus staining in the ciliary body, destructive retinitis was rarely observed in IFNy-/- mice. Microglia and IFNy play important roles in the immune response to virus infection, but depletion of single cell types or cytokines did not result in early panretinal HSV-1 infection in the injected eye. Taken together, these findings support the idea that the timing and appearance of different cell types and cytokines is critical to protection of the retina of the injected eye from infection due to direct spread of virus; however, it is likely that during the innate immune response in the eye, other cell types and cytokines can compensate for the absence of a single cell type or of a single cytokine.
    • PKC and ATR Mediated Regulation of Cisplatin-Induced Renal Tubular Cell Apoptosis

      Pabla, Navjotsingh; Department of Cellular Biology and Anatomy (2009-03)
      Cisplatin is one of the most widely used anti-cancer drug. However, its use and efficacy is limited due to nephrotoxicity. One fourth of patients treated with cisplatin develop varying degree of renal impairment, frequently resulting in acute kidney injury. Due to high mortality associated with acute kidney injury, effort has been made to understand the molecular basis of cisplatin nephrotoxicity and develop effective renoprotective strategies. In kidneys, cisplatin is accumulated in tubular cells; however the uptake mechanism that is responsible for high accumulation of cisplatin in renal cells is unclear. In tubular cell, cisplatin accumulation induces cell death by apoptosis. Mechanistically, our laboratory has demonstrated a critical role of p53 in tubular cell apoptosis during cisplatin nephrotoxicity. However, the proximal events that contribute to p53 activation and related signaling are unknown. The focus of my work was to decipher these early events during cisplatin nephrotoxicity. Firstly, my results suggest that the copper transporter Ctr1 is highly expressed in renal tubular cells and is responsible for renal uptake of cisplatin. Secondly, I show that DNA damage response involving ATR-Chk2 is responsible for p53 activation and consequent apoptosis during cisplatin-induced kidney injury and nephrotoxicity. Thirdly, I have identified that PKCd is a novel regulator of cisplatin nephrotoxicity. During cisplatin treatment PKCd is activated in a Src dependent manner and is responsible for activation of MAPKs, contributing to renal cell death. Most importantly, my results suggest that pharmacological inhibition of PKCd ameliorates renal injury without affecting the anticancer efficacy of cisplatin. These results have not only provided new insights into the 3 molecular mechanism of cisplatin nephrotoxicity, but have also identified a novel strategy to mitigate the side effects of cisplatin in normal renal tissues.
    • Murine CD19+ Plasmacytoid Dendritic Cells Expressing Indoleamine 2,3 Dioxygenase

      Kahler, David J.; Department of Cellular Biology and Anatomy (2008-10)
      Indoleamine 2,3 Dioxygenase (IDO) is a potent immunomodulatory enzyme whose role has been described in diverse physiologic states including pregnancy, cancer, tissue transplants, autoimmune disease, chronic inflammation, and depression. IDO suppresses antigen specific T cell proliferation via mechanisms including tryptophan degradation and the production of toxic metabolites, and the activation of resting regulatory T cells (Tregs). IDO expression is tightly regulated in the murine spleen, as only rare dendritic cell (DC) subsets are competent to express IDO. Therefore, an accurate phenotype by which to identify IDO competent DCs in tissues is important when ascribing the role of IDO competent DCs in disease models. Here we show that IDO competent CD19+ pDCs (CD19+ pDCs) express high levels of costimulatory receptors (CD80 / CD86) under homeostatic conditions indicating a mature or activated phenotype and uniquely express the Class I MHC-like molecule CD1d, and the chemokine receptor CCR6. IDO competent pDCs do not share the same lineage as other murine splenic DCs as they were the only DC subset to express Pax5, and were present in reduced numbers in murine models of B cell development indicating that they develop from B cell precursors. Distinct signaling requirements regulate IDO induction in IDO competent pDCs as MyD88 was required for IDO induction and function in inflamed skin draining lymph nodes following phorbol myristate acetate application but not for IDO transcript expression or STAT1 or STAT2 protein phosphorylation following treatment with recombinant cytokines. CD19+ pDCs from WT mice but not mice genetically deficient for the IDO1 gene formed stress granules (SG) following treatment with IFNγ, which were not prevented by inhibitors of IDO activity indicating that SG formation was not IDO dependent. We hypothesize that IDO competent murine splenic pDCs uniquely expressing CD19 are phenotypically and functionally distinct from other splenic DC subsets and respond to inflammatory signals by expressing IDO. We further hypothesize that activated IDO causes distinct yet undefined biochemical changes within IDO competent pDCs following induction most probably by activating the integrated stress response and the eif2a kinases GCN2, PKR, and PERK.
    • The role of stromal cell-derived factor-1 in cell mobilization, cell homing and neovascularization following stroke

      Walker, Aisha L.; Department of Cellular Biology and Anatomy (2007-11)
      Stroke is the 3rd leading cause of death and the leading cause of long-term disability in the U.S. With only one approved drug presently used in clinics, there is a great need for the development for new therapeutic targets. Stromal cell derived factor-1 (SDF-1) is a small chemokine that may aid in cerebral repair following stroke. Acting primarily through the CXCR4 receptor, SDF-1 is known to be chemotactic for neuroblasts, endothelial cells, and bone marrow derived (BMD) cells including stem and progenitor cells found in the bone marrow. Recently, BMD stem/progenitor cells have become widely studied for their potential role in tissue repair following ischemia. SDF-1 is under hypoxic regulation and is highly expressed in ischemic brain tissue for at least 30 days following ischemia suggesting it may play role in long term repair or remodeling. The goal of these studies is to determine the role of SDF-1 in cerebral repair following stroke. I hypothesize that SDF-1 upregulaton during brain ischemia contributes to tissue repair and neurological recovery by inducing the homing of bone marrow-derived cells to the site of injury and neovascularization. In a mouse middle cerebral artery ligation (MCAL) permanent occlusion stroke model, I investigated mobilization, homing, and differentiation of adult bone marrow derived (BMD) cells in response to SDF-1 induced by cerebral ischemia. Results presented in this dissertation show that SDF-1 induces mobilization of BMD cells following stroke. Once mobilized, BMD cells homed to the brain and either retained their blood cell phenotypes (i.e. monocytes and neutrophils) or they differentiated mostly into microglia cells. Many BMD cells migrated to a perivascular location with a subset becoming pericytes. Additionally, I found that SDF-1 induced neovascularization and this occurs through a combination of angiogenic and vasculogenic processes in the in vivo stroke model as well as in an in vitro tube formation assay. However, we did not detect beneficial preservation of brain tissue or augmented functional recovery with treatment of SDF-1, but it remains to be determined if altering timing, delivery, or isoform-specificity of SDF-1 may be therapeutically beneficial.
    • Amyloid Peptide-a7 Nicotinic Acetylcholine Receptor Interactions: Implications For Cytoprotection In Vitro

      Li, Xinyu D.; Department of Cellular Biology and Anatomy (2006-11)
      Brain deposition of (3-amyloid peptide 1-42 (A(31 -42)-containing senile plaques has been a consistent finding in Alzheimer’s disease (AD). However, the link between Apl-42 and neuronal degeneration remains unclear. It has been reported that AP peptides bind with selectivity to a l nicotinic acetylcholine receptors (a7nAChRs), in both healthy and Alzheimer’s Diseased brain tissues. The goal of this study was to demonstrate the functional inhibition of oc7nAChRs induced by Api-42, both in systems in vitro and in vivo. Initially, differentiated PC-12 cells were preloaded with fura 2-AM and intracellular free Ca2+ levels were determined by fluorescent imaging. Nicotine-induced Ca2+ signals were inhibited by pretreatment with the a7nAChR-selective antagonists, abungarotoxin (BTX) and methyllycaconitine (MLA). Nicotine induced Ca2+ influx was also blocked by pretreatment with 100 nM Api-42. In the same model, nicotine produced a concentration-dependent increase in cell viability in differentiated PC-12 cells that underwent nerve growth factor (NGF) withdrawal for 24 hr. The cytoprotective action of nicotine was efficiently antagonized by co-treatment with a7nAChR antagonists. A concentration-dependent inhibition of the cytoprotective action of nicotine also was produced by co-treatment with Apl-42 (1-100 nM). Also in differentiated PC-12 cells, nicotine induced a concentration-dependent increase in cell surface Trk A receptor expression. This increase was almost completely reversed by a7receptor-selective antagonists, and by co-treatment with Api-42. In in vivo studies with rats, intracerebroventricular (icv) injection of choline, a selective a7nAChR agonist, produced transient, but dose-dependent pressor responses and prolonged decreases in heart rate. Icv pretreatment with BTX and MLA significantly inhibited the cardiovascular responses to subsequent injection of choline. Pretreatment with the Api-42 also significantly inhibited the choline-induced cardiovascular changes suggesting that the peptide can block an oc7nAChR-mediate response in vivo. Nicotine also was administered to rats by direct injection into a lateral cerebral ventricle. Estimation of Trk A expression in necropsied brain tissues revealed significant increases in hippocampus and entorhinal cortex. These increases were significantly inhibited in rats co-treated with a-bungarotoxin or with Api-42. The data derived from these in vitro and in vivo experiments support the hypothesis that low physiological concentrations of AP peptides inhibit the function of a7nAChRs, thereby contributing to the loss in neuronal viability that accompanies Alzheimer’s disease.
    • Impact of Genetic Predisposition and Environmental Stress on Measures of Preclinical Essential Hypertension

      Poole, Joseph C.; Department of Cellular Biology and Anatomy (2006-06)
      The main objective of this project was to determine the impact of genetic risk and chronic environmental stress on measures of preclinical essential hypertension (EH) (e.g., exaggerated cardiovascular reactivity, increased resting hemodynamics and increased left ventricular mass [LVM]). A secondary objective was to evaluate the moderating and interactive effects of ethnicity, gender, body mass index [BMI] and anger expression on EH risk indices. Two genes with relevance for blood pressure (BP) control (e.g., beta-2 adrenergic receptor [ADRB2] gene and serotonin transporter [5-HTT] gene) were used to define genetic risk. Chronic environmental stress was assessed by socioeconomic status (SES) and subjective social status (SSS). The project consisted of three sequential studies on a large, multiethnic cohort of young adults (N>500). The first two studies were cross-sectional and based on the analysis of cardiovascular reactivity, resting hemodynamics and LVM data collected at a single visit. The third study was longitudinal and involved the tracking of BP and LVM over a 15-year span from childhood to early adulthood. In the first study, ADRB2 haplotype significantly interacted with anger suppression in African Americans such that high anger suppressing carriers had the highest resting SBP (p<.05) and TPR reactivity to a cold pressor task (p<.01). In European Americans, ADRB2 haplotype significantly interacted with BMI to predict resting hemodynamics, such that carriers who were high in BMI showed the highest SBP (p<.05). In the second study, a significant interaction between the 5-HTT promoter region polymorphism (5-HTTLPR) and social status was found for cardiovascular reactivity, such that S allele homozygotes who were low in SES and high in SSS exhibited the greatest BP and TPR reactivity to the video game stressor (p-values<.05). No significant interaction was found between 5- HTTLPR and social status in the longitudinal study, however a significant 5- HTTLPR by BMI interaction was determined for LVM, such that obese LL homozygotes had the greatest LVM over time (p<.001). Results from this project expand what is currently known with regard to EH etiology and carry implications for the prevention of EH through the early consideration of genetic, environmental and demographic risk factors.
    • Early Events in the Periovulatory Interval: Steroidogenesis and Proliferation in Macaque granulosa cells

      Fru, Karenne N; Department of Cellular Biology and Anatomy (2006-06)
      The periovulatory interval is defined as the period of time between the ovulatory stimulus and ovulation of the ovarian follicle. It is initiated by a midmenstrual cycle release of luteinizing hormone (LH) from the pituitary and initiates a cascade of events that eventually lead to extrusion of a fertilizable oocyte as well as remodeling of the follicle into the corpus luteum. Previous experiments looking beyond 12hr after the ovulatory stimulus have identified multiple changes to the preovulatory follicle while little is known of the early periovulatory interval. In spite of the paucity of information available about this time period, it was hypothesized that multiple unknown changes occur early in the interval that are critical to normal ovulation and luteinization. Two endpoints were examined in the periovulatory interval; steroidogenic changes as well as mural granulosa cell proliferation. The novel observation of CYP 21 induction was made as well as identification of 11-deoxycorticosterone (DOC) synthesis in response to hCG both in vivo and in vitro. Additionally, mineralocoritoid receptor (MR) is expressed by granulosa cells thus establishing their potential for corticosteroid sensitivity. Antagonism of MR ablates the normal synthesis of progesterone in response to hCG although the mechanism remains unclear. It was also concluded that even though mural granulosa cells are less likely to proliferate in response to exogenous stimulus in the form of epidermal growth factor (EGF) after hCG, proliferation can be enforced in even luteinizing granulosa cells using insulin. Moreover, mural granulosa cells express EGF family members in response to hCG and express EGF receptor constitutionally. However, more work needs to be done to elucidate the absence of EGF driven proliferation in luteinizing but not non-luteinized granulosa cells.
    • The Mechanobiology of Cranial Sutures

      Byron, Craig D.; Department of Cellular Biology and Anatomy (2005-07)
      A central hypothesis that cranial suture growth and modeling vary with respect to the mechanical loading environment is tested in a mouse sagittal suture model using three Specific Aims. Experiments within these aims were designed to elucidate mechanisms of bone formation and bone resorption at the cellular level and to determine how these processes influence the morphology and performance of cranial suture connective tissues. It is argued that suture waveform complexity (measured using fractal analysis) is generated by the positive coupling of osteogenesis along convex bone margins and bone resorption along concave bone margins and that this turnover cycle is regulated in large part by mechanical forces acting on the suture bone-ligament interface. This suture formfunction relationship is believed to operate via mechanosensing mechanisms within skeletal connective tissues. Although mechanically-induced cell wounding appears to be involved in normal suture biology, it does not occur in the fashion predicted. Apoptosis is not directly implicated. Thus, it is predicted that bone resorption in cranial sutures does not localize according to regions of shear-induced cell death but rather to regions adjacent to osteoblastic activity. Tension rather than shear is most likely to be the driving force in this system.
    • Regulation of Reduced-Folate Transporter-1 in Retinal Pigment Epithelium

      Naggar, Hany A.; Department of Cellular Biology and Anatomy (2003-04)
      (First Paragraph) The purpose of these studies was to analyze the regulation of the folate transport protein, reduced-folate transporter (RFT-1) in the retinal pigment epithelium (RPE) under conditions o f hyperglycemia, hyperhomocysteinemia and folate deficiency. A detailed description o f the retina, followed by information regarding folate and regulation o f RFT-1, is provided below.
    • Use of Sigma Receptor Ligands to Prevent Retinal Ganglion Cell Apoptosis Characteristic of Diabetic Retinopathy

      Martin, Pamela M; Department of Cellular Biology and Anatomy (2003-04)
      (First Paragraph)Diabetic retinopathy is a major sight-threatening disease and is the leading cause of blindness among working-aged Americans, affecting approximately 10 to 12 million persons (Wu, 1995). Although retinal vasculature is particularly vulnerable to damage in diabetes, other retinal cells are at risk. Very recently, Barber et al. (1998) documented increased apoptosis of neural retinal cells in experimental diabetes in rats and diabetes mellitus in humans. Notably, retinal ganglion cells (RGCs) were found to be at particular risk. Ganglion cell death in diabetic retinopathy is thought to be mediated via overstimulation o f N-methyl-D-aspartate (NMDA) receptors by glutamate. oRl is a nonopiate and nonphencyclidine-binding site that has numerous pharmacological and physiological functions. In some studies, agonists for aR l have been shown to afford neuroprotection against overstimulation of the NMDA receptor. The purpose of these studies was to evaluate the potential use of aR ligands, particularly those that bind specifically to o R l, as neuroprotective agents in the treatment of RGC apoptosis characteristic of diabetic retinopathy. A detailed description of the retina, followed by information about diabetes and the mechanisms thought to be involved in the pathogenesis of diabetic retinopathy, particularly the apoptotic death of RGCs associated with diabetic retinopathy, is provided below.
    • The Effects of Dental Resin Polymerization Initiators on Cell Lipid Metabolism

      Datar, Rahul A.; Department of Cellular Biology and Anatomy (2003-04)
      Benzoyl peroxide and camphorquinone, initiators of heat and light polymerized dental resins, are considered cytotoxic and the mechanism of cytotoxicity suggested is lipid peroxidation-induced membrane damage. The mechanism of such damage is not clear. The objectives of our current study were I) To study the effects of the various concentrations of initiators benzoyl peroxide and camphorquinone on cell lipid metabolism, 2) To study the effects of peroxidation-inducing concentrations of benzoyl peroxide on turnover of major lipids, 3) To study the effects of the materials on the lipid second messenger ceramide and on apoptotic responses in cells. Methods. Lipid metabolism i.e. synthesis as well as turnover, was measured using l4C acetate in HCP and THP-l cells. The lipids were extracted using the Bligh & Dyer method of lipid extraction and separated using one and two-dimensional thin-layer chromatography. The lipid peroxidation was measured using thio-barbituric acid reactive substance (T-BARS) produced in response to benzoyl peroxide combined with ferric chloride and camphorquinone with, or without activation with light, when combined with an enhancer dimethylaminoethyl ethyl methacrylate (DMAEMA). Ceramides were detected by extracting neutral lipids using chloroform/methanol extraction and separated by high performance thin-layered chromatography (HPTLC). DNA fragmentation assay was used to detect apoptosis. Results. Benzoyl peroxide and camphorquinone at minimally inhibitory concentrations induced similar changes in neutral lipids such as increased triglycerides and decreased cholesterol synthesis. Sphingomyelin changes were specific to HCP cells exposed to camphorquinone. The changes were mostly related to altered synthesis rather than turnover. The changes were also cell-type specific. Toxic concentrations induced peroxidation as measured by T-BARS in a time and dose dependent manner only in HCP cells while THP-1 showed different responses. Major lipid profiles were unaltered at peroxidation-inducing concentrations. Sub-toxic concentrations of benzoyl peroxide induced ceramide elevation at 24 hours, after an initial inhibition at 10 minutes, in both cell types. DNA fragmentation was, however, evident only in THP-l cells at sub-toxic concentration. Conclusion. Both initiators, benzoyl peroxide and camphorquinone, induced changes in neutral lipids. Their mechanism of peroxidation-inducing membrane damage was not dependent on the quantitative alteration in major polar lipids. Benzoyl peroxide induced changes in ceramides in both HCP and THP-l cells. Induction of apoptosis was clearly seen only in THP-l cells in response to benzoyl peroxide while HCP cells lacked this response.
    • T-Type Calcium Current and Calcium-Induced Calcium-Release in Developing Chick Myocardium

      Kitchens, Susan A.; Department of Cellular Biology and Anatomy (2002-02)
      HYPOTHESES 1. The contribution of T-type calcium currents to the calcium transient are greater at young developmental ages, but decline with chick heart development. The decrease in contribution of T-type calcium current to the calcium transient mirrors the normal developmental reduction in magnitude of T-type current in the chick heart. 2. T-type calcium current plays a role in calcium-induced calcium-release during chick heart development. T-type current plays a significant role in the calcium-induced calcium-release process in younger embryos due to the greater magnitude of the current at earlier developmental stages. 3. More than one isoform of the T-type calcium channel is present in developing chick myocardium. The multiple isoforms will function concomitantly to provide sufficient T-type calcium current for proper development. 4. The expression of the T-type calcium channel in ventricle decreases with development. There is a concomitant decrease in T-type Ca2* current stimulation of CICR. SPECIFIC AIMS 1. To determine the contribution of T-type calcium current to the calcium transient during development in chick ventricular myocytes. The approach is to use a fluorescent calcium indicator to measure the transients from myocytes at embryonic day (ED) 5, EDI 1 andED15. 2. To determine the contribution of T-type calcium current to calcium-induced calciumrelease during chick heart development. The approach is to use pharmacological agents to quantify the contribution to the Ca3* transient from T-type Ca3* current stimulated CICR. 3. To determine which isoforms of the T-type calcium channel are likely to be present in chick myocardium. The approach is to use PCR methods to identify any T-type channel isoform mRNA expressed in chick ventricle. 4. To determine the level of expression of T-type calcium channel isoforms during the development of chick ventricle. The approach is to use molecular quantitation methods to examine the expression pattern of T-type channel isoforms in chick ventricle during development.
    • Emotional and Physical Health Impacts of Intergenerational Caregiving for the Cognitively and/or Functionally Impaired Elderly in Korea

      Kim, Jin-Sun; Department of Physiological and Technological Nursing (2000-05)
      The purpose of this study was to examine the emotional and physical health of daughter and daughter-in-law caregivers who cared for cognitively and/or functionally impaired parents or parents-in-law in Korea and to identify factors that explain the emotional and physical health of Korean daughter and daughter-in-law caregivers. The study was guided by Riegel’s (1975,1979) and Lemer’s (1985, 1986, 1991) human developmental theories with emphasis on cultural factors and social network interactions. A purposive sample of 120 daughter and daughter-in-law caregivers who cared for cognitively and/or functionally impaired parents or parents-in-law was selected for this study. Care-recipients were predominantly female, widowed and less educated. Levels of cognitive and functional impairment were relatively low compared to Western studies. Caregivers were predominantly daughters-in-law and married. Most provided caregiving due to a general sense of obligation and responsibility rather than affectional motives. Caregivers in this study reported relatively poor emotional and physical health. Hierarchical regression analyses revealed that poor emotional health of caregivers was predicted by lower family income, the presence of dementia in carerecipients, and higher social conflict. Poor physical health of caregivers was predicted by older age, fewer competing roles, and poor emotional health. Among cultural variables, only social conflict was a significant predictor of caregivers ’ emotional health, while competing roles were significant predictors of caregivers ’ physical health. In addition to regression analyses, path analysis was used to test an overall conceptual model of caregiver health. Social conflict emerged as an important mediating variable for caregiver emotional health; furthermore, social conflict and the caregivers * emotional health were mediators for caregiver physical health. This study confirmed the importance o f a comprehensive understanding of social network interactions. Social conflict, especially intrafamily conflict was a powerful predictor of caregivers ’ negative health outcomes. Interventions to relieve negative social network interaction may prevent or relieve the negative health outcomes of caregivers.
    • Characterization of Cardiac L-Type and T-Type Calcium Channels During Normal and Defective Chick Heart Development

      Nichols, Carol A.; Department of Cellular Biology and Anatomy (2000-03)
      (First Paragraph) The human heart is vital for survival from early in embryonic development throughout life. It begins developing around the third week of gestation from a pair of endocardial tubes that fuse to form a single primitive heart tube. The single-lumen heart tube develops a series of expanded areas and infoldings that divide it into four presumptive chambers. As the embryo grows, the heart begins looping. This looping process serves to bring the four presumptive chambers into the appropriate orientation for septation. The developing heart remodels itself into four separated chambers (two atria or holding chambers, two ventricles or pumping chambers) which provide for separate systemic and pulmonary circulation at birth. In most mammals, oxygenated blood enters the left atrium through four pulmonary veins. The blood is forced into the left ventricle when the left atrium contracts. When the left ventricle contracts, blood is pumped through the aorta and carried throughout the body. Deoxygenated blood returns to the right atrium via the superior and inferior vena cavae. Blood is forced into the right ventricle by contraction of the right atrium. Blood is then pumped through the pulmonary trunk and arteries to the lungs to be re-oxygenated. The four- chambered heart is formed by the eighth week o f gestation. (Larsen, 1997; de la Cruz & Markwald, 1998).
    • Artificial Chromosome Transgenesis Reveals Long-Distance Negative Regulation of ragl in Zebrafish

      Jessen, Jason R.; Department of Biochemistry and Molecular Biology (1999-11)
      Despite the essential roles played by the recombination activating genes (ragl and rag2) during V(D)J recombination, the mechanisms that restrict their expression to lymphoid cells are undefined. Using a novel approach to achieve artificial chromosome transgenesis in zebrafish, we demonstrate that distal regulatory elements are critical to suppress ragl expression in inappropriate tissues. In contrast to smaller reporter gene constructs, 125 and 75 kb artificial chromosomes containing the zebrafish rag genomic locus directed GFP expression in a pattern reflective of endogenous rag 1. Mapping experiments identified a positive element 5' of ragl that enhances GFP expression in both lymphoid and non-lymphoid tissues and a negative element 5' of ra g l that specifically suppresses GFP expression in the skeletal muscle. Our transgenic zebrafish also express GFP in olfactory neurons which we show represent an authentic ra g l expression site in zebrafish.
    • Creating a Selective Advantage for Stem Cells: A Strategy for Gene Therapy

      Menezes, Kareena M.; Department of Cellular Biology and Anatomy (1999-10)
      (Statement of the Problem) Various approaches are used to treat the many known genetic diseases. The treatments are often incompletely effective, and they sometimes have undesirable side effects. Somatic cell gene therapy might provide truly effective permanent cures. Gene therapy, however, is still in the experimental stages, and much needs to be learned about stem cell biology before gene therapy becomes routine clinical practice. Moreover, inferences made from experiments in vitro do not necessarily model the in vitro setting. If treatments designed and tested in vitro can also be made workable and proven to be therapeutic in vivo, a major contribution to clinical gene therapy would be achieved. The described research, which attempts to encourage the stem cells to proliferate rather than divide down the hematopoietic cascade, could be significant in terms of increasing in number those hematopoietic cells that have been successfully modified by therapeutic vectors. The long-term goal of this research is to find a way to provide modified stem cells with a selective advantage in repopulating the marrow of a patient with a genetic disease. Ultimately it will be necessary to confer the selective advantage on somatic cells by introducing DNA into the patient’s defective bone marrow stem cells. However for purposes of preliminary laboratory analyses, a more reproducible system of testing a candidate genes’ potential for providing a selective advantage is necessary. In the present case, an Erythropoietin Receptor transgenic mouse line is used to provide stem cells, each of which already expresses the candidate selective-advantage gene.