• Bisphosphonate-Related Osteonecrosis of the Jaw: From Mechanism to Treatment

      Howie, Rebecca; Department of Cellular Biology and Anatomy (2015-04-20)
      With 55 million prescriptions issued each year, bisphosphonates are the second most prescribed class of drug in the United States. They are widely used to treat diseases with excessive osteoclastic resorption, including post-menopausal osteoporosis, Paget’s disease, and tumor metastasis to bone. Unfortunately, with long term intravenous administration of nitrogen-containing bisphosphonates some patients develop bisphosphonate-related osteonecrosis of the jaw (BRONJ). This debilitating disease has limited treatment options once it has manifested and no mechanism for its development has been elucidated. This dissertation explores the novel concept that bisphosphonates cause osteonecrosis of the jaw by impairing osteocyte-induced osteoclastogenesis and, through the physical accumulation of bisphosphonates in bone, impairing the ability of recruited osteoclasts to attach thereby arresting bone healing. Furthermore, it explores the possibility that chelating agents can be used for the removal of bisphosphonate attachment from bone systemically and locally during extractions, potentially leading to a future preventive treatment. It was found that 13 weeks of 80µg/kg intravenous tail vein injections of Zoledronate followed by two mandibular molar extractions caused the clinical presentation of BRONJ as analyzed by the gross, radiographic, and histological methods. Bone dynamic parameters and TRAP staining suggested an impaired ability for the bone to remodel and defective osteoclast attachment in treated groups that persisted eight weeks after the cessation of treatment. Additionally, it was found through the use of a fluorescently tagged bisphosphonate, that the decalcifying agents cadmium, EDTA, and citric acid all had the ability to cause the significant release of bound bisphosphonate from bone. Finally, this dissertation showed that the migration of monocytes treated with low doses of Zoledronate had increased migration, while their migration to conditioned media of osteocytes treated with Zoledronate was impaired. Collectively, these data suggest that invasive trauma by itself consistently precipitated massive bone necrosis in Zoledronate treated animals, possibly through a bisphosphonate driven alteration of monocyte migration and that the use of decalcifying agents could acutely remove bisphosphonate from bone both systemically and locally. This study establishes and effective rodent model for BRONJ and a possible preventive strategy for the side-effects of bisphosphonates during high-risk situations.