• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Evaluation of a Novel Compression Resistant Matrix for Recombinant Human Bone Morphogenetic Protein-2 (RHBMO-2) for Onlay Graft Indications

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Lu, Sheldon_2014.pdf
    Size:
    9.037Mb
    Format:
    PDF
    Download
    Authors
    Lu, Sheldon
    Issue Date
    6/4/2014
    URI
    http://hdl.handle.net/10675.2/318843
    
    Metadata
    Show full item record
    Abstract
    The discovery and subsequent characterization of endogenous signaling peptides known as bone morphogenetic proteins (BMPs) capable of inducing de novo bone formation in postfetal life represents a critical advancement in the understanding of tissue morphogenesis and has become an incentive to develop additional growth factor based tissue engineering strategies (Wozney & Seeherman 2004). Because BMPs act locally, a suitable carrier system must be used to ensure effective presentation of an adequate dose to a target site (Mont et al. 2004). A number of candidate biomaterials have thus been tested as potential carrier technologies (Huang et al. 2008). Currently, recombinant human BMP-2 (rhBMP-2) coupled with an absorbable collagen sponge (ACS) manufactured from bovine Achilles tendon Type 1 collagen is the only FDA approved device for orthopedic and craniofacial indications. Although the rhBMP-2/ACS construct has demonstrated clinical efficacy for indications including spine fusion, long bone fracture healing, sinus and alveolar augmentation, the ACS’s inability to resist tissue compression limits its use for onlay indications (Wikesjö et al. 2007).
    Affiliation
    Department of Oral Biology
    Description
    The file you are attempting to access is currently restricted to Augusta University. Please log in with your NetID if off campus.
    Collections
    Theses and Dissertations
    Department of Oral Biology & Diagnostic Services: Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.