• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    The Role of Phospholipase D2 and Its Interaction with Aquaporin 3 in Primary

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Qin_Haixia_PhD_2010.pdf
    Size:
    2.865Mb
    Format:
    PDF
    Download
    Authors
    Qin, Haixia
    Issue Date
    2010-04
    URI
    http://hdl.handle.net/10675.2/317628
    
    Metadata
    Show full item record
    Abstract
    Regulated keratinocyte proliferation and differentiation is necessary for normal skin function. In mouse keratinocytes phospholipase D2 (PLD2) colocalizes with aquaporin 3 (AQP3), probably via a direct protein-protein interaction as seen in Sf9 cells. Since AQP3 can transport glycerol, a substrate of PLD2, we hypothesized that AQP3 and PLD2 function together to form phosphatidylglycerol (PG), a lipid second messenger which inhibits keratinocyte proliferation and promote differentiation. First, adenovirusmediated PLD2 overexpression enhanced keratinocyte proliferation under control conditions and inhibited differentiation induced by a moderately elevated calcium level. However, PG synthesis was inhibited with PLD2 overexpression; this decrease may result from disruption of the endogenous PLD2 and AQP3 interaction, and/or reduced AQP3 activity following overexpression of PLD2. Next, AQP3 was overexpressed. Overexpression of either PLD2 or AQP3 inhibited the activity of transglutaminase (TGase), a marker of keratinocyte differentiation. However, co-overexpression of AQP3 and PLD2 returned TGase activity to control levels, under both control and calciumstimulated conditions. Similarly, PG synthesis was inhibited by either PLD2 or AQP3 overexpression, but PG levels were returned to control values with co-overexpression. These results are consistent with our hypothesis that PG is a differentiation signal: less PG leads to proliferation and inhibition of differentiation. The caveolin-1 scaffolding domain peptide has been found to interact functionally with PLD2 in low-density membrane microdomains. We propose that reduced AQP3 and PLD2 interaction resulting from disruption of lipid rafts by the caveolin-1 scaffolding domain peptide results in less PG synthesis and the inhibition of calcium-induced keratinocyte differentiation. Mouse keratinocytes were treated with cell-permeable caveolin-1 scaffolding domain peptide (CSDP) and cell differentiation was stimulated using a moderately elevated extracellular calcium concentration. The CSDP had no effect itself on PG synthesis, differentiation or proliferation, but it prevented the changes induced by a moderate calcium concentration, whereas a negative control peptide did not. The CSDP altered PLD2 distribution within membrane microdomains, but had little or no effect on AQP3 distribution. Finally, we showed that the CSDP disrupted lipid rafts in cell membranes by itself, while when applied with calcium simultaneously it prevented the changes induced by moderate calcium. We conclude that the CSDP regulates both calcium-inhibited proliferation and -stimulated differentiation, at least in part, through effects on PG production.
    Affiliation
    Department of Physiology
    Description
    The file you are attempting to access is currently restricted to Augusta University. Please log in with your NetID if off campus.
    Collections
    Theses and Dissertations
    Department of Physiology Theses and Dissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.