• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Scholarly CommonsCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsIssue DateSubmit DateSubjects

    My Account

    LoginRegister

    About

    AboutCreative CommonsAugusta University LibrariesUSG Copyright Policy

    Statistics

    Display statistics

    Correlation Coefficient Inference for Left-Censored Biomarker Data with Known Detection Limits

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Authors
    McCracken, Courtney Elizabeth
    Issue Date
    2013-05
    URI
    http://hdl.handle.net/10675.2/317606
    
    Metadata
    Show full item record
    Abstract
    Researchers are often interested in the relationship between biological concentrations obtained using two different assays, both of which may be biomarkers. Despite the continuing advances in biotechnology, the value of a particular biomarker may fall below some known limit of detection (LOD). Data values such as these are referred to as non-detects (NDs) and can be treated as left-censored observations. When attempting to measure the association between two concentrations, both of which are subject to NDs, serious complications can arise in the data analysis. Simple substitution, random imputation, and maximum likelihood estimation methods are just a few of the methods that have been proposed for handling NDs when estimating the correlation between two variables, both of which are subject to left-censoring. Unfortunately, many of the popular methods require that the data follow a bivariate normal distribution or that only a small percentage of the data for each variable are below the LOD. These assumptions are often violated with biomarker data. In this paper, we evaluate the performance of several methods, including Spearman’s rho, when the data do not follow a bivariate normal distribution and when there are moderate to large censoring proportions in one or both of the variables. We evaluate the performance of seven methods for estimating the correlation, ρ, between two left-censored variables using bias, median absolute deviation, 95% confidence interval width, and coverage probability under assumptions of various sample sizes, correlations, and censoring proportions. We show that using substitution and imputation methods yields biased estimates of ρ and less than nominal coverage probability under most of the simulation parameters we examined. We recommend the maximum likelihood method for general use even when the data significantly depart from bivariate normality.
    Affiliation
    Department of Biostatistics and Epidemiology
    Collections
    Theses and Dissertations
    Department of Biostatistics and Epidemiology: Theses andDissertations

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.