• Antimycotic Ciclopirox Olamine in the Diabetic Environment Promotes Angiogenesis and Enhances Wound Healing

      Ko, Sae Hee; Nauta, Allison; Morrison, Shane D.; Zhou, Hongyan; Zimmermann, Andrew; Gurtner, Geoffrey C.; Ding, Sheng; Longaker, Michael T.; McNeil, Paul L.; Department of Cellular Biology and Anatomy; et al. (2011-11-18)
      Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.
    • Decreased expression of Sprouty2 in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: a correlation with BDNF expression.

      Pillai, Anilkumar; Department of Psychiatry and Health Behavior (2008-03-12)
      BACKGROUND: Current theories on the pathophysiology of schizophrenia suggest altered brain plasticity such as decreased neural proliferation and migration, delayed myelination, and abnormal synaptic modeling, in the brain of subjects with schizophrenia. Though functional alterations in BDNF, which plays important role in neuroplasticity, are implicated in many abnormalities found in schizophrenia, the regulatory mechanism(s) involved in the abnormal signaling of BDNF in schizophrenia is not clear. The present study investigated whether Sprouty2, a regulator of growth factor signaling, is abnormally expressed in schizophrenia, and is associated with the changes in BDNF mRNA in this disorder. The potential effect of antipsychotic drugs on Sprouty2 expression was tested in adult rats. METHODS AND FINDINGS: Sprouty2 and BDNF gene expression were analyzed in dorsolateral prefrontal cortex samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA in 100 individuals (35 with schizophrenia, 31 with bipolar disorder, and 34 psychiatrically normal controls) showed significantly decreased expression of Sprouty2 and BDNF in both schizophrenia and bipolar disorder. Moreover, a significant correlation between these two genes existed in control, schizophrenia and bipolar subjects. Long-term treatment with antipsychotic drugs, haloperidol and olanzapine, showed differential effects on both Sprouty2 and BDNF mRNA and protein levels in the frontal cortex of rats. CONCLUSION: These findings demonstrating decreased expression of Sprouty2 associated with changes in BDNF, suggest the possibility that these decreases are secondary to treatment rather than to factors that are significant in the disease process of either schizophrenia and/or bipolar disorder. Further exploration of Sprouty2-related signal transduction pathways may be helpful to design novel treatment strategies for these disorders.
    • Dentin Sialophosphoprotein (DSPP) Gene-Silencing Inhibits Key Tumorigenic Activities in Human Oral Cancer Cell Line, OSC2

      Joshi, Rajeshree; Tawfik, Amany; Edeh, Nneka; McCloud, Veronica; Looney, Stephen W.; Lewis, Jill; Hsu, Stephen; Ogbureke, Kalu U.E.; Department of Oral Biology; Department of Pathology; et al. (2010-11-12)
      Background: We determined recently that dentin sialophosphoprotein (DSPP), a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins) family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs) where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA) interference was employed to silence DSPP in OSC2 cells.
    • Expression and localization of GPR109A (PUMA-G/HM74A) mRNA and protein in mammalian retinal pigment epithelium.

      Martin, Pamela M; Ananth, Sudha; Cresci, Gail A.; Roon, Penny; Smith, Sylvia B; Ganapathy, Vadivel; Department of Biochemistry and Molecular Biology; Department of Cellular Biology and Anatomy; Department of Ophthalmology; Department of Surgery (2009-02-19)
      PURPOSE: GPR109A has been identified as a G-protein-coupled receptor for niacin. beta-hydroxybutyrate (beta-HB) is a physiologic ligand for the receptor. beta-HB, the predominate ketone body in circulation, is an important energy source for neurons, including retinal neurons, under various physiologic and pathologic conditions. The identification of GPR109A as the receptor for beta-HB suggests additional, hitherto unknown, functions for this metabolite. The circulating levels of beta-HB increase in diabetes. Since retinopathy is a serious complication associated with diabetes, we investigated GPR109A expression in retina and in different retinal cell types to determine if the receptor may have a role in the pathophysiology of diabetic retinopathy. METHODS: RT-PCR, fluorescent in situ hybridization, and immunofluorescent techniques were used to analyze GPR109A expression in mouse retina and in three transformed retinal cell lines: ARPE-19 (RPE), RGC-5 (ganglion), and rMC-1 (M?�ller). Activation of GPR109A by niacin and beta-HB was demonstrated in ARPE-19 cells by cAMP assay. RESULTS: Studies conducted using mouse retinal tissues demonstrated that GPR109A is expressed in retina with its expression restricted to RPE, where it differentially polarizes to the basolateral membrane. These results were confirmed with cell lines, which demonstrated GPR109A expression in ARPE-19, but not in rMC-1 and RGC-5 cells. Primary cultures of mouse RPE also showed robust expression of GPR109A. cAMP assay demonstrated that GPR109A expressed in RPE is functional. CONCLUSIONS: These data represent the first report on GPR109A expression in retina. The exclusive expression of GPR109A in RPE basolateral membrane, which has access to beta-HB in blood, may have biologic importance in diabetic retinopathy.
    • IFN-c Upregulates Survivin and Ifi202 Expression to Induce Survival and Proliferation of Tumor-Specific T Cells

      Zimmerman, Mary; Yang, Dafeng; Hu, Xiaolin; Liu, Feiyan; Singh, Nagendra; Browning, Darren; Ganapathy, Vadivel; Chandler, Phillip; Choubey, Divaker; Abrams, Scott I.; et al. (2010-11-22)
      Background: A common procedure in human cytotoxic T lymphocyte (CTL) adoptive transfer immunotherapy is to expand tumor-specific CTLs ex vivo using CD3 mAb prior to transfer. One of the major obstacles of CTL adoptive immunotherapy is a lack of CTL persistence in the tumor-bearing host after transfer. The aim of this study is to elucidate the molecular mechanisms underlying the effects of stimulation conditions on proliferation and survival of tumor-specific CTLs.
    • Increased Expression and Activity of 12-Lipoxygenase in Oxygen-Induced Ischemic Retinopathy and Proliferative Diabetic Retinopathy

      Al-Shabrawey, Mohamed; Mussell, Rene; Kahook, Khalid; Tawfik, Amany; Eladl, Mohamed; Sarthy, Vijay; Nussbaum, Julian; El-Marakby, Ahmed; Park, Sun Young; Gurel, Zafer; et al. (2011-01-21)
      OBJECTIVE: Arachidonic acid is metabolized by 12-lipoxygenase (12-LOX) to 12-hydroxyeicosatetraenoic acid (12-HETE) and has an important role in the regulation of angiogenesis and endothelial cell proliferation and migration. The goal of this study was to investigate whether 12-LOX plays a role in retinal neovascularization (NV).