• Involvement of p54(nrb), a PSF partner protein, in DNA double-strand break repair and radioresistance.

      Li, Shuyi; Kuhne, Wendy W.; Kulharya, Anita; Hudson, Farlyn Z; Ha, Kyungsoo; Cao, Zhen; Dynan, William S.; Department of Pathology (2009-11-16)
      Mammalian cells repair DNA double-strand breaks (DSBs) via efficient pathways of direct, nonhomologous DNA end joining (NHEJ) and homologous recombination (HR). Prior work has identified a complex of two polypeptides, PSF and p54(nrb), as a stimulatory factor in a reconstituted in vitro NHEJ system. PSF also stimulates early steps of HR in vitro. PSF and p54(nrb) are RNA recognition motif-containing proteins with well-established functions in RNA processing and transport, and their apparent involvement in DSB repair was unexpected. Here we investigate the requirement for p54(nrb) in DSB repair in vivo. Cells treated with siRNA to attenuate p54(nrb) expression exhibited a delay in DSB repair in a gamma-H2AX focus assay. Stable knockdown cell lines derived by p54(nrb) miRNA transfection showed a significant increase in ionizing radiation-induced chromosomal aberrations. They also showed increased radiosensitivity in a clonogenic survival assay. Together, results indicate that p54(nrb) contributes to rapid and accurate repair of DSBs in vivo in human cells and that the PSF.p54(nrb) complex may thus be a potential target for radiosensitizer development.
    • Switched alternative splicing of oncogene CoAA during embryonal carcinoma stem cell differentiation.

      Yang, Zheqiong; Sui, Yang; Xiong, Shiqin; Liour, Sean S; Phillips, Andrew C; Ko, Lan; Department of Pathology (2007-04-23)
      Alternative splicing produces functionally distinct proteins participating in cellular processes including differentiation and development. CoAA is a coactivator that regulates transcription-coupled splicing and its own pre-mRNA transcript is alternatively spliced. We show here that the CoAA gene is embryonically expressed and alternatively spliced in multiple tissues to three splice variants, CoAA, CoAM and CoAR. During retinoic-acid-induced P19 stem cell differentiation, the expression of CoAA undergoes a rapid switch to its dominant negative splice variant CoAM in the cavity of the embryoid body. CoAM functionally inhibits CoAA, and their switched expression up-regulates differentiation marker Sox6. Using a CoAA minigene cassette, we find that the switched alternative splicing of CoAA and CoAM is regulated by the cis-regulating sequence upstream of the CoAA basal promoter. Consistent to this, we show that p54(nrb) and PSF induce CoAM splice variant through the cis-regulating sequence. We have previously shown that the CoAA gene is amplified in human cancers with a recurrent loss of this cis-regulating sequence. These results together suggest that the upstream regulatory sequence contributes to alternative splicing of the CoAA gene during stem cell differentiation, and its selective loss in human cancers potentially deregulates CoAA alternative splicing and alters stem cell differentiation.