• Anomalous coronary artery found in the syncopal workup of an elderly man

      Oommen, Ronnie; Wilkins, Thad; Chen, Stephen Y; Arora, Vishal; Department of Family Medicine; Department of Medicine; Department of Cardiology (2012-07)
      Syncope, defined as a transient loss of consciousness, is seen in 1% of all visits to emergency departments and urgent care clinics in the United States. Syncope is categorized as cardiogenic, neurologic, or psychogenic. Anomalies of the coronary arteries are rare, and anomalous coronary arteries present as syncope more often in the young than in the elderly; syncope rarely occurs in patients 65 years of age and older. There are 2 major variants of coronary anomalies. In the first variant, the left main coronary artery arises from the right aortic sinus. In the second variant, the right coronary artery arises from the left aortic sinus. The risk of sudden death is higher in patients with the left coronary artery arising from the right aortic sinus. We present a case of an anomalous coronary artery discovered during the syncopal workup in a 66-year-old man because no such cases have been published in the United States. We will discuss the management of anomalous coronary arteries as well as a systematic approach to the diagnosis and management of syncope.
    • Blood lead level and risk of asthma.

      Joseph, Christine L.M.; Havstad, Suzanne L; Ownby, Dennis R; Peterson, Edward L; Maliarik, Mary; McCabe, Michael J; Barone, Charles; Johnson, Christine Cole; Department of Pediatrics (2005-07-08)
      Asthma and lead poisoning are prevalent among urban children in the United States. Lead exposure may be associated with excessive production of immunoglobulin E, possibly increasing asthma risk and contributing to racial disparities. The objective of this study was to examine racial differences in the association of blood lead level (BLL) to risk of developing asthma. We established and followed a cohort prospectively to determine asthma onset, using patient encounters and drug claims obtained from hospital databases. Participants were managed care enrollees with BLL measured and documented at 1-3 years of age. We used multiple variable analysis techniques to determine the relationship of BLL to period prevalent and incident asthma. Of the 4,634 children screened for lead from 1995 through 1998, 69.5% were African American, 50.5% were male, and mean age was 1.2 years. Among African Americans, BLL > or = 5 and BLL > or = 10 microg/dL were not associated with asthma. The association of BLL > or = 5 microg/dL with asthma among Caucasians was slightly elevated, but not significant [adjusted hazard ratio (adjHR) = 1.4; 95% confidence interval (CI), 0.7-2.9; p = 0.40]. Despite the small number of Caucasians with high BLL, the adjHR increased to 2.7 (95% CI, 0.9-8.1; p = 0.09) when more stringent criteria for asthma were used. When compared with Caucasians with BLL < 5 microg/dL, African Americans were at a significantly increased risk of asthma regardless of BLL (adjHR = 1.4-3.0). We conclude that an effect of BLL on risk of asthma for African Americans was not observed. These results demonstrate the need for further exploration of the complex interrelationships between race, asthma phenotype, genetic susceptibilities, and socioenvironmental exposures, including lead.
    • Combined use of preoperative 18F FDG-PET imaging and intraoperative gamma probe detection for accurate assessment of tumor recurrence in patients with colorectal cancer.

      Sarikaya, Ismet; Povoski, Stephen P; Al-Saif, Osama H; Kocak, Ergun; Bloomston, Mark; Marsh, Steven; Cao, Zongjian; Murrey, Douglas A; Zhang, Jun; Hall, Nathan C; et al. (2007-08-09)
      BACKGROUND: The purpose of this study was to combine intraoperative gamma probe (GP) detection with preoperative fluorine 18-fluoro-2-deoxy-glucose positron emission tomography (18F FDG-PET) imaging in order to improve detection of tumor recurrence in colorectal cancer (CRC) patients. METHODS: Twenty-one patients (12 females, 9 males) with a mean age of 54 years (range 31-78) were enrolled. Patients were suspected to have recurrent CRC by elevated CEA (n = 11), suspicious CT findings (n = 1), and clinically suspicious findings (n = 9). Preoperative FDG-PET scan and intraoperative GP study were performed in all patients. Mean time interval between preoperative FDG-PET scan and surgery was 16 days (range 1-41 days) in 19 patients. For intraoperative GP studies, 19 patients were injected with a dose of 10-15 mCi 18F FDG at approximately 30 minutes before the planned surgery time. In two patients, the intraoperative GP study was performed immediately after preoperative FDG-PET scan. RESULTS: Preoperative FDG-PET and intraoperative GP detected 48 and 45 lesions, respectively. A total of 50 presumed site of recurrent disease from 20 patients were resected. Thirty-seven of 50 presumed sites of recurrent disease were histological-proven tumor positive and 13 of 50 presumed sites of recurrent disease were histological-proven tumor negative. When correlated with final histopathology, the number of true positive lesions and false positive lesions by preoperative FDG-PET and intraoperative GP were 31/9 and 35/8, respectively. Both preoperative FDG-PET and intraoperative GP were true positive in 29 lesions. Intraoperative GP detected additional small lesions in the omentum and pelvis which were not seen on preoperative FDG-PET scan. FDG-PET scan demonstrated additional liver metastases which were not detected by intraoperative GP. Preoperative FDG-PET detected distant metastasis in the lung in one patient. The estimated radiation dose received by a surgeon during a single 18F FDG GP surgery was below the occupational limit. CONCLUSION: The combined use of preoperative FDG-PET and intraoperative GP is potentially helpful to the surgeon as a roadmap for accurately locating and determining the extent of tumor recurrence in patients with CRC. While intraoperative GP appears to be more sensitive in detecting the extent of abdominal and pelvic recurrence, preoperative FDG-PET appears to be more sensitive in detecting liver metastases. FDG-PET is also a valuable method in detecting distant metastases.
    • Decreased expression of Sprouty2 in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: a correlation with BDNF expression.

      Pillai, Anilkumar; Department of Psychiatry and Health Behavior (2008-03-12)
      BACKGROUND: Current theories on the pathophysiology of schizophrenia suggest altered brain plasticity such as decreased neural proliferation and migration, delayed myelination, and abnormal synaptic modeling, in the brain of subjects with schizophrenia. Though functional alterations in BDNF, which plays important role in neuroplasticity, are implicated in many abnormalities found in schizophrenia, the regulatory mechanism(s) involved in the abnormal signaling of BDNF in schizophrenia is not clear. The present study investigated whether Sprouty2, a regulator of growth factor signaling, is abnormally expressed in schizophrenia, and is associated with the changes in BDNF mRNA in this disorder. The potential effect of antipsychotic drugs on Sprouty2 expression was tested in adult rats. METHODS AND FINDINGS: Sprouty2 and BDNF gene expression were analyzed in dorsolateral prefrontal cortex samples from the Stanley Array Collection. Quantitative real-time PCR analysis of RNA in 100 individuals (35 with schizophrenia, 31 with bipolar disorder, and 34 psychiatrically normal controls) showed significantly decreased expression of Sprouty2 and BDNF in both schizophrenia and bipolar disorder. Moreover, a significant correlation between these two genes existed in control, schizophrenia and bipolar subjects. Long-term treatment with antipsychotic drugs, haloperidol and olanzapine, showed differential effects on both Sprouty2 and BDNF mRNA and protein levels in the frontal cortex of rats. CONCLUSION: These findings demonstrating decreased expression of Sprouty2 associated with changes in BDNF, suggest the possibility that these decreases are secondary to treatment rather than to factors that are significant in the disease process of either schizophrenia and/or bipolar disorder. Further exploration of Sprouty2-related signal transduction pathways may be helpful to design novel treatment strategies for these disorders.
    • Differential effects of taurine treatment and taurine deficiency on the outcome of renal ischemia reperfusion injury

      Mozaffari, Mahmood S.; Abdelsayed, Rafik; Patel, Champa; Wimborne, Hereward J. C.; Liu, Jun Yao; Schaffer, Stephen W; Department of Oral Biology; Department of Oral Health and Diagnostic Sciences (2010-08-24)
      Taurine possesses membrane stabilization, osmoregulatory and antioxidant properties, aspects of relevance to ischemic injury. We tested the hypothesis that body taurine status is a determinant of renal ischemic injury. Accordingly, renal function and structure were examined in control (C), taurine-treated (TT) and taurine deficient (TD) rats that were subjected to bilateral renal ischemia (60 min) followed by reperfusion (IR); sham operated rats served as controls. Baseline urine osmolality was greater in the TD group than in the control and the TT groups, an effect associated with increased renal aquaporin 2 level. The IR insult reduced urine osmolality (i.e., day-1 post insult); the TD/IR group displayed a more marked recovery in urine osmolality by day-6 post insult than the other two groups. Fluid and sodium excretions were lower in the TD/IR group, suggesting propensity to retention. Histopathological examination revealed the presence of tubular necrotic foci in the C/IR group than sham controls. While renal architecture of the TD/IR group showed features resembling sham controls, the TT/IR group showed dilated tubules, which lacked immunostaining for aquaporin 2, but not 1, suggestive of proximal tubule origin. Finally, assessment of cell proliferation and apoptosis revealed lower proliferation but higher apoptotic foci in the TT/IR group than other IR groups. Collectively, the results indicate that body taurine status is a major determinant of renal IR injury.
    • Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries.

      Prodoehl, Mark J; Hatzirodos, Nicholas; Irving-Rodgers, Helen F; Zhao, Zhen Z; Painter, Jodie N; Hickey, Theresa E; Gibson, Mark A; Rainey, William E; Carr, Bruce R; Mason, Helen D; et al. (2009-11-13)
      Several studies have demonstrated an association between polycystic ovary syndrome (PCOS) and the dinucleotide repeat microsatellite marker D19S884, which is located in intron 55 of the fibrillin-3 (FBN3) gene. Fibrillins, including FBN1 and 2, interact with latent transforming growth factor (TGF)-beta-binding proteins (LTBP) and thereby control the bioactivity of TGFbetas. TGFbetas stimulate fibroblast replication and collagen production. The PCOS ovarian phenotype includes increased stromal collagen and expansion of the ovarian cortex, features feasibly influenced by abnormal fibrillin expression. To examine a possible role of fibrillins in PCOS, particularly FBN3, we undertook tagging and functional single nucleotide polymorphism (SNP) analysis (32 SNPs including 10 that generate non-synonymous amino acid changes) using DNA from 173 PCOS patients and 194 controls. No SNP showed a significant association with PCOS and alleles of most SNPs showed almost identical population frequencies between PCOS and control subjects. No significant differences were observed for microsatellite D19S884. In human PCO stroma/cortex (n = 4) and non-PCO ovarian stroma (n = 9), follicles (n = 3) and corpora lutea (n = 3) and in human ovarian cancer cell lines (KGN, SKOV-3, OVCAR-3, OVCAR-5), FBN1 mRNA levels were approximately 100 times greater than FBN2 and 200-1000-fold greater than FBN3. Expression of LTBP-1 mRNA was 3-fold greater than LTBP-2. We conclude that FBN3 appears to have little involvement in PCOS but cannot rule out that other markers in the region of chromosome 19p13.2 are associated with PCOS or that FBN3 expression occurs in other organs and that this may be influencing the PCOS phenotype.
    • Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation

      Ibrahim, Ahmed S.; El-Shishtawy, Mamdouh M.; Pena, Alejandro Jr.; Liou, Gregory I.; Department of Ophthalmology; Department of Medicine (2010-10-08)
      Purpose: Diabetic retinopathy (DR) is associated with microglial activation and increased levels of inflammatory cytokines. Genistein, a tyrosine kinase inhibitor, has been shown to possess anti-inflammatory potential that so far untested in animal models of diabetes. The aims of this study are to evaluate the efficacy of genistein for alleviation of diabetes-induced retinal inflammation and also to gain insight into the molecular mechanisms involved therein by analyzing the effect of genistein on concomitant microglia activation in the diabetic retina and in isolated cells.
    • Hydrogen peroxide improves the visibility of ulcer bases in acute non-variceal upper gastrointestinal bleeding: a single-center prospective study.

      Sridhar, Subbaramiah; Chamberlain, Sherman; Thiruvaiyaru, Dharma; Sethuraman, Sankara; Patel, Jigneshkumar; Schubert, Moonkyung; Cuartas-Hoyos, Francisco; Schade, Robert R.; Department of Medicine (2009-10-19)
      BACKGROUND: Acute non-variceal upper gastrointestinal bleeding (ANVB) or hemorrhage (used interchangeably) is an emergency. Endoscopically applied hydrogen peroxide (H2O2) has been shown to improve visualization of the ulcer base. AIMS: To test the hypothesis that ulcer base clot clearance with 3% H2O2 improves the visualization of ANVB lesions compared to water alone. METHODS: In this single-center prospective study, 320 patients with ANVB were examined, of which 81 met the entry criteria for evaluation. All patients with ANVB underwent urgent endoscopy. Those with adherent clots on the ulcer base were sprayed with 250 ml of water, followed by up to 100 ml of 3% H2O2. The main outcome measurement was Kalloo"s Visual Scores of the ulcer base before and after water and H2O2. RESULTS: Eighty-one patients with gastric ulcers (GU; 34) and duodenal ulcers (DU; 47) met the entry criteria. The mean improvement in grade from water to H2O2 was 2.04 (95% confidence interval [CI] (1.86, 2.23)). The mean volume of H2O2 used to clear clots was higher (70 ml) in patients who were negative for both Helicobacter pylori and non-steroidal anti-inflammatory drug (NSAID) use than in those who were positive for both (31 ml) (P = 0.00). More DU patients (72%) had visible vessels than GU patients (44%) (P = 0.01). CONCLUSIONS: H2O2 improved the visualization of ulcer bases in ANVB. A smaller volume of H2O2 was required to clear clots in patients who used NSAIDs and had H. pylori infection. H2O2 identified more DU vessels. The use of H2O2 should be considered as a standard therapy in the management of clots in ANVB.
    • In vivo MRI Characterization of Progressive Cardiac Dysfunction in the mdx Mouse Model of Muscular Dystrophy

      Stuckey, Daniel J.; Carr, Carolyn A.; Camelliti, Patrizia; Tyler, Damian J.; Davies, Kay E.; Clarke, Kieran; McNeil, Paul L.; Department of Cellular Biology and Anatomy; College of Graduate Studies (2012-01-3)
      Aims: The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.
    • Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats.

      Xu, Lin; Fagan, Susan C.; Waller, Jennifer L.; Edwards, David; Borlongan, Cesar V; Zheng, Jianqing; Hill, William D; Feuerstein, Giora; Hess, David C.; Department of Neurology; et al. (2004-05-19)
      BACKGROUND: Minocycline, a semi-synthetic tetracycline antibiotic, is an effective neuroprotective agent in animal models of cerebral ischemia when given in high doses intraperitoneally. The aim of this study was to determine if minocycline was effective at reducing infarct size in a Temporary Middle Cerebral Artery Occlusion model (TMCAO) when given at lower intravenous (IV) doses that correspond to human clinical exposure regimens. METHODS: Rats underwent 90 minutes of TMCAO. Minocycline or saline placebo was administered IV starting at 4, 5, or 6 hours post TMCAO. Infarct volume and neurofunctional tests were carried out at 24 hr after TMCAO using 2,3,5-triphenyltetrazolium chloride (TTC) brain staining and Neurological Score evaluation. Pharmacokinetic studies and hemodynamic monitoring were performed on minocycline-treated rats. RESULTS: Minocycline at doses of 3 mg/kg and 10 mg/kg IV was effective at reducing infarct size when administered at 4 hours post TMCAO. At doses of 3 mg/kg, minocycline reduced infarct size by 42% while 10 mg/kg reduced infarct size by 56%. Minocycline at a dose of 10 mg/kg significantly reduced infarct size at 5 hours by 40% and the 3 mg/kg dose significantly reduced infarct size by 34%. With a 6 hour time window there was a non-significant trend in infarct reduction. There was a significant difference in neurological scores favoring minocycline in both the 3 mg/kg and 10 mg/kg doses at 4 hours and at the 10 mg/kg dose at 5 hours. Minocycline did not significantly affect hemodynamic and physiological variables. A 3 mg/kg IV dose of minocycline resulted in serum levels similar to that achieved in humans after a standard 200 mg dose. CONCLUSIONS: The neuroprotective action of minocycline at clinically suitable dosing regimens and at a therapeutic time window of at least 4-5 hours merits consideration of phase I trials in humans in view of developing this drug for treatment of stroke.
    • Nasolaryngoscopy in a family medicine clinic: indications, findings, and economics.

      Wilkins, Thad; Gillies, Ralph A; Getz, April; Zimmerman, Dave; Kang, Larry; Department of Family Medicine (2010-09)
      Nasopharyngeal complaints are common among patients who present to primary care. Patients with these complaints are often referred for nasolaryngoscopy evaluation to exclude serious conditions such as laryngeal cancer.
    • Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation.

      El-Remessy, Azza B.; Tang, Y; Zhu, G; Matragoon, Suraporn; Khalifa, Yousef; Liu, E K; Liu, J-Y; Hanson, E; Mian, S; Fatteh, Nadeem; et al. (2008-12-04)
      PURPOSE: Degenerative retinal diseases are characterized by inflammation and microglial activation. The nonpsychoactive cannabinoid, cannabidiol (CBD), is an anti-inflammatory in models of diabetes and glaucoma. However, the cellular and molecular mechanisms are largely unknown. We tested the hypothesis that retinal inflammation and microglia activation are initiated and sustained by oxidative stress and p38 mitogen-activated protein kinase (MAPK) activation, and that CBD reduces inflammation by blocking these processes. METHODS: Microglial cells were isolated from retinas of newborn rats. Tumor necrosis factor (TNF)-alpha levels were estimated with ELISA. Nitric oxide (NO) was determined with a NO analyzer. Superoxide anion levels were determined by the chemiluminescence of luminol derivative. Reactive oxygen species (ROS) was estimated by measuring the cellular oxidation products of 2', 7'-dichlorofluorescin diacetate. RESULTS: In retinal microglial cells, treatment with lipopolysaccharide (LPS) induced immediate NADPH oxidase-generated ROS. This was followed by p38 MAPK activation and resulted in a time-dependent increase in TNF-alpha production. At a later phase, LPS induced NO, ROS, and p38 MAPK activation that peaked at 2-6 h and was accompanied by morphological change of microglia. Treatment with 1 microM CBD inhibited ROS formation and p38 MAPK activation, NO and TNF-alpha formation, and maintained cell morphology. In addition, LPS-treated rat retinas showed an accumulation of macrophages and activated microglia, significant levels of ROS and nitrotyrosine, activation of p38 MAPK, and neuronal apoptosis. These effects were blocked by treatment with 5 mg/kg CBD. CONCLUSIONS: Retinal inflammation and degeneration in uveitis are caused by oxidative stress. CBD exerts anti-inflammatory and neuroprotective effects by a mechanism that involves blocking oxidative stress and activation of p38 MAPK and microglia.
    • Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway

      Lu, Wenyan; Lin, Cuihong; Roberts, Michael J.; Waud, William R.; Piazza, Gary A.; Li, Yonghe; Mei, Lin; Department of Neurology; College of Graduate Studies (2011-12-16)
      The Wnt/b-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/b-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/b-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced b-catenin accumulation, and inhibit Wnt/b-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/b-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC50 values less than 1 mM for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC50 values are comparable to those shown to suppress the activities of Wnt/b-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/b-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer.
    • Operant Sensation Seeking Requires Metabotropic Glutamate Receptor 5 (mGluR5)

      Olsen, Christopher M.; Childs, Daniel S.; Stanwood, Gregg D.; Winder, Danny G.; Tsien, Joe Z.; Department of Neurology; College of Graduate Studies (2010-11-30)
      Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior.
    • Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation

      El-Remessy, Azza B.; Tawfik, Huda E.; Matragoon, Suraporn; Pillai, Bindu; Caldwell, Ruth B.; Caldwell, Robert William; Department of Pharmacology and Toxicology; Vascular Biology Center (2010-11-1)
      Endothelial dysfunction is characterized by reduced bioavailability of NO due to its inactivation to form peroxynitrite or reduced expression of eNOS. Here, we examine the causal role of peroxynitrite in mediating diabetes-induced endothelial dysfunction. Diabetes was induced by STZ-injection, and rats received the peroxynitrite decomposition catalyst (FeTTPs, 15â mg/Kg/day) for 4 weeks. Vasorelaxation to acetylcholine, oxidative-stress markers, RhoA activity, and eNOS expression were determined. Diabetic coronary arteries showed significant reduction in ACh-mediated maximal relaxation compared to controls. Diabetic vessels showed also significant increases in lipid-peroxides, nitrotyrosine, and active RhoA and 50% reduction in eNOS mRNA expression. Treatment of diabetic animals with FeTTPS blocked these effects. Studies in aortic endothelial cells show that high glucose or peroxynitrite increases the active RhoA kinase levels and decreases eNOS expression and NO levels, which were reversed with blocking peroxynitrite or Rho kinase. Together, peroxynitrite can suppress eNOS expression via activation of RhoA and hence cause vascular dysfunction.
    • The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome.

      Pedersen-White, Jennifer R; Chorich, Lynn P; Bick, David P; Sherins, Richard J; Layman, Lawrence C; Department of Medicine; Department of Obstetrics and Gynecology; Department of Obstetrics and Gynecology; Institute of Molecular Medicine and Genetics; Institute of Neuroscience (2008-06-23)
      Idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS) are clinically and genetically heterogeneous disorders caused by a deficiency of gonadotrophin-releasing hormone (GnRH). Mutations in three genes--KAL1, GNRHR and FGFR1--account for 15-20% of all causes of IHH/KS. Nearly all mutations are point mutations identified by traditional PCR-based DNA sequencing. The relatively new method of multiplex ligation-dependent probe amplification (MLPA) has been successful for detecting intragenic deletions in other genetic diseases. We hypothesized that MLPA would detect intragenic deletions in approximately 15-20% of our cohort of IHH/KS patients. Fifty-four IHH/KS patients were studied for KAL1 deletions and 100 were studied for an autosomal panel of FGFR1, GNRH1, GNRHR, GPR54 and NELF gene deletions. Of all male and female subjects screened, 4/54 (7.4%) had KAL1 deletions. If only anosmic males were considered, 4/33 (12.1%) had KAL1 deletions. No deletions were identified in any of the autosomal genes in 100 IHH/KS patients. We believe this to be the first study to use MLPA to identify intragenic deletions in IHH/KS patients. Our results indicate approximately 12% of KS males have KAL1 deletions, but intragenic deletions of the FGFR1, GNRH1, GNRHR, GPR54 and NELF genes are uncommon in IHH/KS.
    • Reduced-folate carrier (RFC) is expressed in placenta and yolk sac, as well as in cells of the developing forebrain, hindbrain, neural tube, craniofacial region, eye, limb buds and heart.

      Maddox, Dennis M; Manlapat, Anna K; Roon, Penny; Prasad, Puttur D; Ganapathy, Vadivel; Smith, Sylvia B; Department of Cellular Biology and Anatomy; Department of Obstetrics and Gynecology; Department of Biochemistry and Molecular Biology; Department of Ophthalmology (2003-10-29)
      BACKGROUND: Folate is essential for cellular proliferation and tissue regeneration. As mammalian cells cannot synthesize folates de novo, tightly regulated cellular uptake processes have evolved to sustain sufficient levels of intracellular tetrahydrofolate cofactors to support biosynthesis of purines, pyrimidines, and some amino acids (serine, methionine). Though reduced-folate carrier (RFC) is one of the major proteins mediating folate transport, knowledge of the developmental expression of RFC is lacking. We utilized in situ hybridization and immunolocalization to determine the developmental distribution of RFC message and protein, respectively. RESULTS: In the mouse, RFC transcripts and protein are expressed in the E10.0 placenta and yolk sac. In the E9.0 to E11.5 mouse embryo RFC is widely detectable, with intense signal localized to cell populations in the neural tube, craniofacial region, limb buds and heart. During early development, RFC is expressed throughout the eye, but by E12.5, RFC protein becomes localized to the retinal pigment epithelium (RPE). CONCLUSIONS: Clinical studies show a statistical decrease in the number of neural tube defects, craniofacial abnormalities, cardiovascular defects and limb abnormalities detected in offspring of female patients given supplementary folate during pregnancy. The mechanism, however, by which folate supplementation ameliorates the occurrence of developmental defects is unclear. The present work demonstrates that RFC is present in placenta and yolk sac and provides the first evidence that it is expressed in the neural tube, craniofacial region, limb buds and heart during organogenesis. These findings suggest that rapidly dividing cells in the developing neural tube, craniofacial region, limb buds and heart may be particularly susceptible to folate deficiency.
    • The Role of Growth Retardation in Lasting Effects of Neonatal Dexamethasone Treatment on Hippocampal Synaptic Function

      Wang, Yu-Chen; Huang, Chiung-Chun; Hsu, Kuei-Sen; Mei, Lin; Department of Neurology; College of Graduate Studies (2010-09-21)
    • Salmonella newport bacteremia in a 12-day-old infant.

      Singh, Abhijit; Wilkins, Thad; Schade, Robert R.; Department of Family Medicine (2011-03)
      In the United States, Salmonella infections (salmonellosis) cause multiple medical problems. Although the most common presenting symptom is diarrhea, bacteremia can also occur. An estimated 1.4 million cases of salmonellosis occur annually in the United States. We present a case of Salmonella bacteremia in a 12-day old infant. We discuss the presenting signs, symptoms, and management strategies for a patient younger than 28 days old (neonate) presenting with fever and diarrhea.
    • Synaptic Defects in the Spinal and Neuromuscular Circuitry in a Mouse Model of Spinal Muscular Atrophy

      Ling, Karen K. Y.; Lin, Ming-Yi; Zingg, Brian; Feng, Zhihua; Ko, Chien-Ping; Mei, Lin; Department of Neurology; College of Graduate Studies (2010-11-11)
      Spinal muscular atrophy (SMA) is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNÎ 7). In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs) in hindlimb muscles of SMNÎ 7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a â ¼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3â 5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1)-positive synapses onto SMNÎ 7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNÎ 7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNÎ 7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.